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Abstract

Modern matching markets are becoming less frictional yet more complex.

We study the implications of these phenomena through the lens of a two-sided

search model in which agents’ reasoning is coarse. In equilibrium, the most de-

sirable agents behave as if they were fully rational, while, for other agents, coarse

reasoning results in overoptimism with regard to their prospects in the market.

Consequently, they search longer than optimal. Moreover, agents with inter-

mediate match values may search indefinitely while all other agents eventually

marry. We show that the share of eternal singles converges monotonically to 1

as search frictions vanish.

1 Introduction

Modern search technologies present new opportunities for individuals who are looking

for a partner. For instance, mobile applications such as Tinder and Bumble, and

online dating sites such as OkCupid and Plenty of Fish, allow individuals to find a

partner in the swipe of a finger. These new technologies have reduced search costs

and thickened matching markets, which enables individuals to meet a large number of

potential matches in a short span of time.

Choosing a partner is one of the most important decisions in a person’s life. This

decision typically entails comparing a specific potential partner to a risky outside op-

tion, that is, continuing to search without knowing for how long or with whom one will
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partner eventually. Assessing this outside option requires understanding other peo-

ple’s behavior, which can be challenging, especially in light of the much wider array of

options the new search technologies bring. Some individuals can be overwhelmed by

these new possibilities. For example, according to a survey by Pew Research Center

(2016), “One-third of people who have used online dating have never actually gone on

a date with someone they met on these sites.”

This paper studies how advances in search technology affect individual decision

making, length of search, and induced matching in the marriage market. To this end,

we study a model of two-sided search with vertical differentiation and non-transferable

utility. This framework has proved useful in understanding decentralized matching

markets such as the marriage and labor markets (see Chade, Eeckhout, and Smith,

2017, for a comprehensive review). In this framework, agents are matched at ran-

dom each period and decide whether to accept the match or continue to search. It is

typically assumed that the participants are fully rational and can perfectly assess the

prospect of remaining single and continuing to search. However, in light of the over-

whelmingly large array of options that are ubiquitous in modern matching markets and

the complexity of the induced search problem, it makes sense to think that individuals

use heuristics and simplified models to assess this prospect.

We depart from the rational expectations paradigm by relaxing the assumption

that agents have a perfect understanding of the mapping from the other agents’ char-

acteristics to their behavior. The literature offers two main notions that capture the

idea that agents have an imperfect perception of this mapping: the partially cursed

equilibrium (Eyster and Rabin, 2005) and the analogy-based expectation equilibrium

(Jehiel, 2005). Both notions allow for various levels of coarse strategic reasoning. In

our setting, these notions capture different biases and induce different beliefs. Our

framework enables us to adapt each of these behavioral notions while keeping the anal-

ysis tractable. We find that, despite their differences, both notions lead to similar

results.

We characterize the equilibria of the model and show that, except for the most

desirable agents, who behave as if they were fully rational, all other agents are overop-

timistic with regard to the prospect of remaining single and continuing to search. The

agents’ overoptimism follows from two reasons: overestimating the payoff they will

obtain in a future marriage and underestimating the time it will take them to get

married.
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This overoptimism has significant implications as, except for the least desirable

agents who accept all potential partners, agents who overvalue the prospect of remain-

ing single reject agents whom a rational agent would accept. In a two-sided market,

overoptimistic agents not only search longer than rational agents, but also impose a

negative externality on agents on the other side of the market and cause them to search

longer as they make it more difficult for them to find a partner. In equilibrium, this

effect leads to a delay in matching. In fact, as long as the discount factor is not too

small, in every symmetric equilibrium, there are agents with intermediate match values

(i.e., moderately desirable agents) who search indefinitely and remain single forever.

By contrast, agents with lower or higher match values marry in finite time. Thus, the

extent to which overoptimism harms the agents is nonmonotonic in their match values.

We show that for any level of coarseness (or, in Eyster and Rabin’s terminology,

any degree of partial cursedness), when search frictions become less intense, the share

of agents who search indefinitely weakly increases. Moreover, it converges to 1 when

search frictions vanish. This result implies that even a slight departure from the rational

expectations model can lead to a market failure when search frictions vanish. Thus,

technological improvements that result in faster and more efficient search, which can

enhance individuals’ welfare if they are fully rational, can degrade it if they are not.

The intuition for the market failure is as follows. If agents falsely believe that “top”

agents are achievable, they prefer to wait for these agents. When the technology allows

potential partners to meet more frequently, their willingness to wait for a top agent

increases and they become more selective. Eventually, when the search technology

improves substantially, agents become too selective and reject agents of their own

caliber or lower. For similar reasons, they are rejected by agents of their own caliber

or higher. As a result, they search indefinitely and never marry.

Our results are quite different from the results under the rational expectations

model, in which, when frictions vanish, the equilibrium converges to a stable matching

in the sense of Gale and Shapley (1962). This contrast highlights that the common

wisdom that matchings will be stable when participants “have a very good idea of

one another’s preferences and have easy access to each other” (Roth and Sotomayor,

1990) hinges on the participants also having a good idea of each other’s behavior and

expectations. While counter-intuitive, the finding that fewer matches are formed when

the market becomes less frictional is consistent with recent empirical findings: Fong

(2019) shows that when more men and women join a dating platform, people in the
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market become more selective and the number of matches per individual goes down.

Related Literature

Our paper contributes to a large body of literature on matching with frictions (see

MacNamara and Collins, 1990; Burdett and Coles, 1997; Eeckhout, 1999; Bloch and

Ryder, 2000; Shimer and Smith, 2000; Chade, 2001; Adachi, 2003; Chade, 2006; Smith,

2006). This literature focuses on the properties of induced matching under various

assumptions on search frictions, match payoffs, search costs, and the ability to transfer

utility. It shows that when utility is nontransferable and frictions vanish, induced

matching converges to efficient matching.1

We assume that the agents’ reasoning is coarse and borrow the behavioral models of

Eyster and Rabin (2005) and Jehiel (2005). Similar ideas have been applied in various

contexts. For example, Piccione and Rubinstein (2003) study intertemporal pricing,

where consumers think in terms of a coarse representation of the equilibrium price

distribution.2 In the context of consumer search, Gamp and Krähmer (2019a) analyze

a model in which a share of consumers do not distinguish between deceptive and candid

products nor can they infer quality from price. In Gamp and Krähmer (2019b), a share

of the consumers misestimate the correlation between price and quality and, as a result,

search excessively in order to find a high-quality product at a low price, falsely believing

that this combination exists. These false expectations stimulate competition between

fully rational sellers and the effect is most intense when the consumers’ search costs

(or level of misestimation) are intermediate.3

We find that, in the matching with frictions framework, coarse reasoning leads

to selection neglect in equilibrium. Esponda (2008) proposes an equilibrium model of

selection neglect and shows that traders who do not account for selection can exacerbate

adverse selection problems. In Jehiel (2018), entrepreneurs decide whether or not to

invest in a project based on feedback from implemented projects. The entrepreneurs

ignore the lack of feedback from non-implemented projects, which, on average, are

1Lauermann and Nöldeke (2014) find conditions under which this result holds without vertical
heterogeneity.

2Other applications are Jehiel (2010) in the context of auctions, Eyster and Piccione (2013), Steiner
and Stewart (2015), Kondor and Kőszegi (2017), and Eyster et al. (2019) in the context of trade in
financial markets, and Antler (2019) in the context of pyramid schemes.

3In these models, agents can be viewed as if they were using a simplified representation of the world
to form their expectations. For a comprehensive review of equilibrium models in which individuals
interpret data by means of a misspecified causal model see Spiegler (2019).
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inferior to implemented ones. As a result they become overoptimistic and implement

projects in cases where it is suboptimal to do so.

To the best of our knowledge there are a limited number of theoretical papers that

relax the full rationality assumption in the context of matching. Eliaz and Spiegler

(2013) analyze a search and matching model where agents exhibit “morale hazard.”

The behavioral assumption in that paper pertains to the agents’ preferences rather

than to their beliefs. In the context of centralized matching, a recent strand of the lit-

erature assumes that agents’ preferences are non-standard in the context of centralized

matching (see, e.g, Antler, 2015; Fernández, 2018; Dreyfuss et al., 2019; Meisner and

von Wangenheim, 2019).

Our departure from the rational expectations setting is in line with empirical ev-

idence that people neglect correlations when problems become more complex (Enke

and Zimmerman, 2017). In the context of centralized school matching, Shorer et al.

(2019) find that students tend to neglect correlation between schools’ tastes and prior-

ities. In the context of courtship, Fisman et al. (2006) find that men exhibit behavior

consistent with choice overload, and Francesconi and Lenton (2010) document similar

findings on both sides of the market.

The paper proceeds as follows. Section 2 present the baseline model and benchmark

results. Section 3 introduces the behavioral models and their analysis. Section 4

concludes. All proofs are relegated to the Appendix.

2 The Baseline Model

There is a set of men M and a set of women W, each containing a unit mass of

agents. Each agent is characterized by a number, which, following Burdett and Coles

(1997), we refer to as the agent’s pizzazz. The agents’ pizzazz is distributed on the

interval [v, v], v > 0, according to an atomless continuous distribution F . We denote

the corresponding density by f and often refer to an agent with pizzazz v as agent v.

In each period, a measure µ > 0 of men and a measure µ of women are drawn uni-

formly at random. These men and women are then randomly matched with each other.

When a pair of agents are matched, they immediately observe each other’s pizzazz and

choose whether to accept or reject the match. If both agents accept, then they marry,

exit the market, and are replaced by two agents with identical characteristics who start

searching in the next period. Otherwise, the match is dissolved, and the agents return
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to the market and continue their search in the next period. When agent v marries

agent w, the latter obtains a payoff of v and the former obtains a payoff of w. All

agents discount the future at a rate δ < 1 and obtain no payoff when single. We refer

to δ and µ as search frictions and assume that the agents maximize their expected

discounted payoff given their beliefs.

A (stationary) strategy for agent v, σv(·) : [v, v] → {1, 0}, is a mapping from

pizzazz of agents on the other side of the market to a decision whether to accept or

reject a match.4 We say that agent v uses a cutoff strategy if there exists âv such that

agent v accepts matches with agents whose pizzazz is at least âv and rejects all others.

Throughout the analysis, we assume that an agent who is indifferent whether to accept

a match or not accepts it, which implies that the agents use cutoff strategies. For each

agent v and profile σ, let Av(σ) = {w|σw(v) = 1} be the set of agents who accept a

match with v and let av(σ) = max {v, sup(Av(σ))}. We often refer to Av(σ) and av(σ)

as agent v’s opportunity set and opportunity value, respectively. When there is no risk

of confusion, we omit the dependence on σ from Av and av.

Throughout the analysis, we focus on symmetric equilibria, namely, equilibria in

which women and men with the same pizzazz use the same strategy. This symmetry

assumption greatly simplifies the notation and makes the exposition clearer. However,

the key results and intuitions remain valid when this assumption is dropped (or when

the distributions of men’s and women’s pizzazz are different). We discuss and explain

the minor differences at the end of Section 3.1.3, after presenting our results.

Benchmark Results: Full Rationality

We now provide a “rational expectations” benchmark. As the analysis follows from

well-known results in the matching with frictions literature, we omit the formal proofs.

Proposition 1 is a classic block segregation result (see, e.g., MacNamara and Collins,

1990; Coles and Burdett, 1997; Eeckhout, 1999; Bloch and Ryder, 2000; Chade, 2001;

Smith, 2006).

Proposition 1 There exist numbers v = v0 > v1 > v2 > ... > vN = v such that, in

the unique equilibrium, every agent v ∈ [vj+1, vj) uses the acceptance cutoff vj+1.

In equilibrium, the agents are partitioned into classes, such that agents who belong to

the same class use the same acceptance cutoff and have the same opportunity value.

4Abusing notation, we can think of σv as a subset of agents on the other side of the market whom
v accepts. Then, σ : [v, v]→ P([v, v]) is a correspondence, which we assume to be measurable.
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All agents are accepted by members of their class and rejected by all members of higher

classes. Thus, agents marry within their class and no agent remains single forever.

By Proposition 1, in equilibrium, every agent’s pizzazz is strictly greater than

her/his acceptance cutoff, except for agents at the lower bound of a class. When

search frictions vanish, the induced matching converges to the unique stable match-

ing (see Eeckhout, 1999; Bloch and Ryder, 2000; Adachi, 2003), which implies that

married couples have the same pizzazz. Thus, when search frictions vanish, the classes

shrink and almost all of the agents’ acceptance cutoffs increase. These increases can

be interpreted as an increase in the agents’ welfare.5

3 Coarse Reasoning in the Matching Market

Consider an agent who faces a decision whether to accept or reject a match. Since

this decision has implications only when there is mutual consent, the agent essentially

compares the known payoff from marrying the partner to the risky option of remaining

single and continuing to search. Assessing the latter option requires the agent to predict

the future behavior of agents of the opposite sex.

A fully rational agent would form an accurate prediction as such agents understand

the other agents’ behavior perfectly: they know who finds them acceptable and who

does not. Our agent, however, has a coarse perception of the other agents’ behavior.

(S)he understands the rate at which (s)he is accepted by potential partners, but does

not discern exactly who finds her/him acceptable and who does not. Essentially, our

agent under-appreciates the correlation between the other agents’ pizzazz and their

behavior.

The two most prominent approaches that capture this idea are the partially cursed

equilibrium (Eyster and Rabin, 2005) and the analogy-based expectation equilibrium

(Jehiel, 2005). In Section 3.1, we take the first approach, which captures the idea that

agents make small mistakes but with respect to the whole population. In Section 3.2,

we take the second approach, which captures the idea that agents make mistakes but

with respect to only a small fraction of the population. We show that, under both

approaches, when search frictions vanish, a small behavioral friction leads to radically

different results than the perfectly assortative matching under the rational expectations

5In equilibrium, every agent v’s acceptance cutoff, âv, is equal to v’s continuation payoff. When
time is continuous, âv is also v’s expected payoff when v enters the game. It is also the case in discrete
time, unless v gets the first sample for free.
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model.

3.1 The Partially Cursed Equilibrium

The notion of partial cursedness was developed by Eyster and Rabin (2005) for Bayesian

games. We now adapt this notion to our setting. Before doing so, it is perhaps useful to

first understand the notion of “full cursedness” in the context of two-sided matching.

Fully cursed agents believe that every agent of the opposite sex accepts them as a

partner with a probability that equals the share of agents on the other side of the

market who accept them. For example, a fully cursed man who is accepted only by

women whose pizzazz is lower than the median believes that each and every woman

accepts him with probability 0.5 regardless of her pizzazz.

Partially cursed agents understand that the other agents’ behavior depends on

their pizzazz but, unlike fully cursed agents, they do not understand to what extent.

Specifically, a partially cursed agent v believes that an agent w on the other side

of the market will accept her/him as a partner with a probability that is a convex

combination of the true probability with which w accepts v and the average rate at

which v is accepted by the general population.

Given a strategy profile σ, the true probability that agent w accepts agent v is

σw(v). The average rate at which the general population accepts agent v is

(1)

∫ v

v

σx(v)f(x)dx.

Thus, a partially cursed agent v believes that agent w will accept her/him as a partner

with probability

(2) γv(w) = ψ

∫ v

v

σx(v)f(x)dx+ (1− ψ)σw(v),

where ψ represents the magnitude of the agents’ mistakes. When ψ = 0, agents have

rational expectations. At the other extreme, when ψ = 1, agents are fully cursed and

neglect the correlation between the other agents’ pizzazz and their behavior. When

ψ ∈ (0, 1), agents understands that different agents’ decisions may depend on their

pizzazz but under-estimates this relation. Thus, ψ can be thought of as a behavioral

friction.

As an illustration, suppose that the median pizzazz in the population is wm and
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that Av = {w|w < wm} for some man v. If v were fully rational, then he would expect

a woman w to accept a match with him if and only if w < wm. A partially cursed

man v with ψ = 0.1 expects women whose pizzazz is greater than wm to accept him

with probability 0.05, and women whose pizzazz is lower than wm to accept him with

probability 0.95. Thus, v overestimates the probability of being accepted by women

whose pizzazz is high and underestimates the probability of being accepted by women

whose pizzazz is low.

Agent v’s (perceived) expected payoff at the beginning of each period conditional

on using an acceptance cutoff âv and beliefs γ(·) is

(3) Uv = µ

∫ v

âv

γv(x)xf(x)dx+ δ

(
1− µ

∫ v

âv

γv(x)f(x)dx

)
Uv.

Rearranging yields

Uv =
µ
∫ v
âv
γv(x)xf(x)dx

1− δ(1− µ
∫ v
âv
γv(x)f(x)dx)

(4)

Definition 1 A strategy profile σ forms a partially cursed equilibrium if, for each

v ∈M ∪W , σv is optimal given γv.

We denote the (perceived) expected payoff conditional on using an optimal accep-

tance cutoff by U?
v and refer to δU?

v as agent v’s continuation value.

Agent v accepts a match with agent w if and only if w ≥ δU?
v , implying that, in

equilibrium, âv = max {δU?
v , v}. The following lemma uses this property to establish

that, in equilibrium, agents with higher pizzazz have higher standards.

Lemma 1 In equilibrium, âv and av are weakly increasing in v.

Lemma 1 implies that if w ∈ Av, then w′ ∈ Av for every w′ < w. Thus, agent v is

rejected by every agent whose pizzazz is greater than av and accepted by every agent

whose pizzazz is lower than av. We now use the monotonicity result to understand

who marries in equilibrium.

3.1.1 Who Marries in Equilibrium?

Under the conventional rational expectations model, if the distribution of agents on

both sides of the market is symmetric, then all agents marry in finite time. In our

9



model, the agents’ coarse reasoning makes some of them too selective to marry. The

next definition will be useful in understanding why this happens and who these eternal

singles are.

Definition 2 Let sv be the perceived discounted expected payoff of an agent whose

opportunity value is v and who uses the cutoff v.

Under partial cursedness, if aw = v, then γw(x) = ψF (v) for any x > v. Thus,

sv =
δµ
∫ v
v
ψF (v)xf(x)dx

1− δ(1− µ
∫ v
v
ψF (v)f(x)dx)

=
δµψF (v)(1− F (v))E[x|x > v]

1− δ(1− µψF (v)(1− F (v)))
(5)

Note that sv depends only on the primitives of the model. The next lemma uses sv to

provide a necessary and sufficient condition for marriage in a symmetric equilibrium.

Lemma 2 Agent v marries in a symmetric equilibrium if and only if

v > sv.(6)

Lemma 2 establishes a necessary and sufficient condition for an agent to marry in

symmetric equilibria. When Condition 6 is not satisfied, it means that given an op-

portunity value v, an agent will prefer remaining single to marrying agent v. An agent

v for whom sv ≥ v exhibits a “Groucho Marx” type of behavior, as v is unwilling to

marry agents who are willing to marry v.

In order to gain intuition for the condition’s necessity, observe that sv is weakly

lower than the continuation value of a woman whose opportunity value is v. By the

monotonicity of the acceptance cutoffs, whenever man v is willing to marry a woman,

her opportunity value is at least v. Hence, when sv > v, every woman that man v

finds acceptable prefers remaining single to marrying him. Therefore, v cannot marry

in equilibrium.6

To see why Condition 6 is also sufficient, note that in a symmetric equilibrium, it

must be that âv ≥ v ≥ av or âv ≤ v ≤ av. If av > v, agent v marries in a symmetric

equilibrium as there are agents who accept v and whom v finds acceptable as well.

Condition 6 essentially implies that if av ≤ v, then v is willing to accept agents whose

pizzazz is lower than v, i.e., âv < v. Since âv < v and av < v cannot both hold in a

6This argument does not depend on whether the equilibrium is symmetric or not.
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symmetric equilibrium, it follows that av = v > âv in this case. Hence, when Condition

6 holds, there are agents who accept v and whom v finds acceptable as well in every

symmetric equilibrium.

Condition 6 allows us to understand who will marry in a partially cursed equilib-

rium. As (5) is continuous and sv = sv = 0, agents with extreme pizzazz values always

marry in finite time while agents with intermediate pizzazz may search indefinitely.

We now use Condition 6 to study the effect of the matching frictions, µ and δ, and the

behavioral friction ψ on the share of eternal singles.

Proposition 2 The share of agents who marry in a symmetric equilibrium weakly

decreases in δ, µ, and ψ. Moreover, it converges to 0 as δ converges to 1.

Proposition 2 establishes that the share of eternal singles increases when the market

becomes less frictional. Note that an agent v marries in equilibrium only if (s)he is

accepted by agents with pizzazz lower than v. Thus, a share of at least F (v) agents

accept v in such a case. Hence, agent v believes that (s)he will be accepted by every

agent with a probability of at least ψF (v) > 0. As search frictions vanish, v expects to

encounter more and more agents with high pizzazz and, since v thinks that all agents

are achievable with probability at least ψF (v), agent v will never accept an agent of

her/his own caliber or lower. For similar reasons, v will never be accepted by agents

of her/his caliber or higher, which makes it impossible for v to marry.

3.1.2 Overoptimism and Oversearch

In the previous section, we showed that some agents in our model may search indefi-

nitely and never leave the market. This suggests that even when they do marry, agents

search longer than is optimal given the other agents’ behavior. The next result shows

that this is indeed the case.

Proposition 3 There exist pizzazz values v1 < v and v2 > v such that if v ≥ v1 or

v < v2, then agent v behaves as if (s)he were fully rational. If v2 ≤ v < v1, then

agent v searches longer than a rational agent would. Moreover, [v1, v] is the top class

in Proposition 1.

Agents who are accepted by all other agents are unaffected by cursedness as all

other agents treat them equally. They correctly estimate both the expected time it
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will take them to marry and their future spouse’s expected pizzazz. Thus, they behave

as if they were fully rational.

All other agents are overoptimistic with regard to their prospects in the market.

They overestimate the expected pizzazz of their future spouse, underestimate the time

it will take them to get married, and, as a result, use an acceptance cutoff that is higher

than optimal.7 In other words, overoptimistic agents reject some matches that a fully

rational agent would accept.

Our agents underestimate the time it will take them to marry because they over-

estimate the rate of mutual acceptance: they accept agents on the other side of the

market who have higher standards than the general population, but do not fully ac-

count for this selection. Thus, unless an agent is accepted by all agents or accepts all

other agents (in which case, there is no selection), the agent overestimates the rate of

mutual acceptance.

Our agents also overestimate the expected desirability of their future spouse. They

assign a positive probability to being accepted by highly desirable agents who actually

reject them and a too low probability to being accepted by low-pizzazz agents who do

accept them. Thus, when assessing the expected desirability of their eventual partners,

they put too much weight on partners with relatively high pizzazz and too little weight

on partners with relatively low pizzazz.

3.1.3 Characterization and Existence

In this subsection, we focus on the structure and existence of the equilibria of the

model. We construct a symmetric equilibrium in which there is block segregation. Our

construction shows that, in general, there are an infinite number of such equilibria.

However, by Condition 6, the set of agents who marry in equilibrium is unique.

In constructing the symmetric equilibria, we use the fact that Condition 6 allows us

to partition [v, v] into maximal intervals in which either all agents marry or none do.

We refer to these intervals as marriage intervals and singles intervals, respectively. The

transition between intervals occurs at points v such that sv = v. We treat each interval

separately and partition it into a potentially infinite number of classes, in which all

agents share the same acceptance cutoff and opportunity value.

As in the rational case, a top class exists and it is possible to construct a sequence

7There is one exception: agents who accept matches with every other agent (i.e., agents whose
pizzazz is lower than v2) never reject matches a fully rational agent would accept.

12



of classes starting from this class. However, unlike in the rational case, the sequence

will not necessarily cover [v, v]. When the sequence does not cover [v, v], it converges to

the highest pizzazz v such that sv = v. That is, the classes cover only the top marriage

interval.

The main challenge in the proof is that, unlike in the top marriage interval, in

any other interval there is no upper class from which we can start the construction.

Nevertheless, we show that it is possible to define an arbitrary initial class in the

interior of each interval and construct two unique sequences of classes on each of the

initial class’s sides. The sequences cover the interval and converge to its end points.

The freedom in defining the initial class implies that there are an infinite number of

equilibria whenever [v, v] is partitioned into more than one interval.

Formally, by Condition 6, we can partition [v, v] into maximal intervals in which

agents either eventually marry or remain single forever. We say that L is a marriage

interval if L is a maximal interval such that sl < l for all l ∈ L. An interval L is said

to be a singles interval if either L is a maximal interval such that sl > l for all l ∈ L,

or sl = l for all l ∈ L. In the latter case, L is often a singleton. Denote [l, l] := cl(L).

We say that C is a class if for every v, w ∈ C, it holds that av = aw ∈ {c, c} and

âv = âw ∈ {c, c}, where [c, c] = cl(C) and c 6= c . We refer to classes contained in

marriage intervals as marriage classes and to classes contained in singles intervals as

singles classes.

The following lemma is key in establishing that, in equilibrium, if an interval con-

tains one class, then it is covered by classes.

Lemma 3 In equilibrium, if an interval L contains a class C, then (i) unless c = v, L

contains a unique class C ′ such that c = c′, and (ii) unless c = v, L contains a unique

class C ′′ such that c′′ = c.

By Lemma 3, if an interval L contains a finite number of classes, then L = [v, v].

Moreover, an infinite sequence of classes must converge to some v satisfying sv = v.

That is, for any maximal interval L, it holds that l ∈ {v, sl} and l ∈ {v, sl}. The next

corollary follows immediately.

Corollary 1 If an interval contains one class, then it is covered by classes.

Due to the search frictions, the agents’ continuation values are bounded by δv.

Thus, in equilibrium, there are two sets of agents, one on each side of the market,
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who are accepted by every agent of the opposite sex. All of these agents have the

same continuation value and, therefore, they use the same acceptance cutoff, which, in

turn, defines the set of agents who are accepted by all the other agents on the other

side of the market. These agents form the top class and are uniquely determined by

the primitives of the model. Thus, Corollary 1 and Proposition 3 imply the following

corollary.

Corollary 2 In equilibrium, the top marriage interval is covered by classes in a unique

manner.

If δ is sufficiently low such that sv < v for all v, implying that all agents marry in

equilibrium, then, by Corollary 2, the equilibrium is unique. Otherwise, the equilibrium

is uniquely defined in the top marriage interval and only in that interval.

In the following proposition, we show equilibrium existence by construction.

Proposition 4 There exists δ such that if δ < δ, then there exists a unique equilibrium

and all agents marry. If δ > δ, then there exist an infinite number of equilibria, in

each of which there is a set of agents who remain single, and this set of eternal singles

is the same in all of these equilibria.

In the symmetric equilibria we constructed, the agents are partitioned into classes.

However, in addition to these equilibria, when δ ≥ δ, there are equilibria in which the

top marriage interval is covered by classes while in every other interval there are no

classes at all. In general, in every interval but the top one, it is possible to construct

equilibrium strategies where the cutoffs and opportunity values are continuous in the

agents’ types. Thus, it is possible to construct equilibria in which close “types” never

have completely disjointed sets of potential partners except in the very top marriage

interval.

Comment: Symmetry in the Model

Throughout the analysis, we imposed symmetry along three dimensions: we focused on

symmetric equilibria, assumed that the men’s and women’s pizzazz values are drawn

from identical distributions, and studied the case where the men’s and women’s level of

strategic sophistication is identical. These assumptions allowed us to convey the main

messages succinctly. However, our key insights are not sensitive to these assumptions.

Since the implications of relaxing the first two types of symmetry are similar, we assume
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that agents’ pizzazz are drawn from identical distributions and focus our discussion on

asymmetric equilibria and different levels of strategic sophistication.

Asymmetric Equilibria

The cornerstone of our analysis of symmetric equilibria was the necessary and sufficient

condition for marriage, sv > v. In asymmetric equilibria, this condition is necessary

for marriage, but it is no longer sufficient. Thus, the agents who marry in a symmetric

equilibrium form a superset of the agents who marry in an asymmetric equilibrium.

When sv > v, agent v cannot marry in asymmetric equilibria. To see why, note

that if sv > v and man (woman) v accepts a match with woman (man) w, then all

men (women) with pizzazz lower than v accept w and so aw ≥ v. When sv > v and

aw ≥ v, agent w prefers continuing searching to marrying v. Thus, agent v is rejected

by every agent whom v accepts and remains single forever. Moreover, when the market

becomes less frictional, more agents remain single (since sv increases in δ, µ, and ψ).

In order to illustrate that sv < v is not sufficient for marriage in asymmetric

equilibria, let δ be such that sv = v for some v and denote that lowest such v by

v?. Note that v? > v since sv = 0. Set âv = v? for all women with v ∈ [v, v?] and

âv = v for all men with v ∈ [v, v?]. For all other agents, define acceptance cutoffs as in

one of the symmetric equilibria constructed in the proof of Proposition 4. Note that

(i) av = v? for all women with v ∈ [v, v?], which implies that âv = v? is optimal for

these women and (ii) av = v for all men with v ∈ [v, v?], which implies that âv = v

is optimal for these men. As in Proposition 4, agents whose pizzazz is lower than

v? accept all agents whose pizzazz is greater than v?, which makes the higher-pizzazz

agents’ behavior optimal in the present case as well. Hence, the strategy profile we

constructed is an equilibrium in which low-pizzazz agents never marry, unlike in a

symmetric equilibrium, in which these agents always do.

This example highlights a more general property: in a symmetric equilibrium,

agents are partitioned into marriage and singles intervals, based on whether sv ≥ v

or sv < v in each interval. In an asymmetric equilibrium, it is possible to turn every

marriage interval into a singles interval (except for the top one, in which the agents’

behavior is pinned down by its top class).

One-Sided Full Rationality

The assumption that the two sides of the market are symmetric in their level of strategic

sophistication is reasonable in the context of a marriage market. However, it makes
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sense to think that, in other contexts, agents on different sides on the market are

different in this respect. For instance, in the context of job–search, employers engage

in the market more frequently than job-seekers and can gather finer information, which

may lead to a better understanding of the market.

As a rough approximation of this idea, we now assume that one side of the market

(women) consists of fully rational agents while the agents on the other side of the

market (men) are partially cursed. A natural question is whether the existence of the

fully rational agents on one side of the market alleviates the problem of oversearch or

not. The next result shows that not only is the answer to this question negative, but,

in fact, the share of eternal singles can be greater in this case.

Proposition 5 Suppose that sv > v for some v < v. In equilibrium, all women whose

pizzazz is lower than v never marry.

Fully rational women react to the overselectiveness of men by lowering their own

standards: if men of their own caliber reject them, they turn to lower-pizzazz men.

The women’s lower standards raise the standards of lower-pizzazz men, thereby ex-

acerbating the problem: the low-pizzazz men become even more selective as they are

accepted by higher-pizzazz rational women and refuse to marry these women as well.

This process leads to unraveling as, eventually, higher-pizzazz women will accept all

men while even the lowest-pizzazz men will be unwilling to marry them.

Proposition 5 shows that even rational agents may find themselves forever single.

In fact, fewer women marry when all women are fully rational than when women are

boundedly rational, in which case women at the bottom of the pizzazz distribution do

marry.

3.2 The Analogy-Based Expectation Equilibrium

In the previous section, we introduced a behavioral friction into the two-sided search

framework. We assumed that agents’ beliefs regarding the behavior of each individual

on the other side of the market are affected by the average behavior of the entire

population on that side, where the partial cursedness parameter allowed us to vary the

magnitude of the agents’ mistakes. We established that even a small departure from

the rational expectations assumption can lead to extremely different outcomes.

In this section, we introduce a different behavioral friction. We assume that agents’

beliefs regarding each individual depend on the behavior of only a subset of agents,
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whose pizzazz is similar that individual’s pizzazz. The size of these subsets allows us

to capture the magnitude of the agents’ mistakes: the smaller the subsets, the smaller

the departure from the conventional model. We show that regardless of the size of

these subsets, when the market becomes less frictional, there are fewer matches each

period and more agents remain single forever.

We use the analogy-based expectation equilibrium (ABEE) (Jehiel, 2005) to incor-

porate this idea into the model. In an ABEE, players bundle different contingencies

into categories. When they assess the other players’ behavior, they fail to distinguish

between their behavior in different contingencies that belong to the same category. We

adapt this concept by assuming that each agent divides the agents on the other side of

the market into categories. The agent then believes that, in each category, all of the

agents behave in the same manner. Specifically, each agent v believes that every agent

in a category accepts her/him as a partner with a probability equal to the average

probability with which v is accepted by the category’s members.

To illustrate the agents’ beliefs in an ABEE, consider a woman w who is accepted

by men whose pizzazz is lower than the median and rejected by all other men. If w

were fully rational, then she would realize that only low-pizzazz men are willing to

marry her. In an ABEE, when k = 1, woman w thinks that all men are equally likely

to accept her as a partner. Since half the men find her acceptable, she thinks that

each men will accept her with probability 0.5. This case is equivalent to full cursedness

(i.e., ψ = 1) in Section 3.1. Now, suppose that k = 3; that is, men are partitioned into

three categories. Since all men in the bottom category accept w, she correctly believes

that all men in this category will accept her as a partner. Similarly, she correctly

expects each man in the top category to reject her. However, woman w’s predictions

are inaccurate with regard to men in the intermediate category, whom she expects to

accept her with probability 0.5 regardless of their pizzazz.

As this example illustrates, unlike in the previous section, agents do not necessarily

think that all other agents are achievable. When all agents in a specific category reject

an individual, the latter correctly predicts that these agents are out of her/his league.

The agents’ beliefs are coarse only with respect to categories in which a fraction of the

population accepts them.

Formally, we assume that the agents on each side of the market are partitioned into

k adjacent cells P1, ..., Pk, where each cell contains the same mass of agents.8 We denote

8Our results are not sensitive to the assumption that each cell contains the same mass of agents.
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sup(Pj) := pj and inf(Pj) := p
j
. Every agent v believes that each w ∈ Pj accepts v as

a partner with probability βvj. We say that a profile of beliefs β = (βvj)v∈M∪W,j∈{1,...,k}

is consistent with a profile of strategies σ if

βvj =

∫
Pj∩Av(σ)

f(x)dx∫
Pj
f(x)dx

for every v ∈M ∪W and every cell j ∈ {1, ..., k}.

Definition 3 A profile of strategies σ and a profile of beliefs β form an ABEE if β is

consistent with σ and, for every v ∈M ∪W , σv is a best response to (βvj)j∈{1,...,k}.

The next lemma establishes that, in an ABEE, agents with higher pizzazz have

higher standards. This result is Lemma 1’s counterpart.

Lemma 4 In a symmetric ABEE, âv and av are weakly increasing in v.

Lemma 4 implies that agents whose pizzazz is lower than av reject agent v. Since,

by definition, agents whose pizzazz is greater than av reject v, there exists at most

one cell in which different cell members treat v differently. Specifically, if av 6∈ Pj,

then either all of the cell’s members reject v or all of them accept v. Either way, v

correctly predicts the cell’s members’ behavior. On the other hand, if av ∈ Pj, then

agent v’s beliefs regarding that cell are coarse.9 Hence, each agent v holds accurate

beliefs regarding the behavior of agents in at least k − 1 cells and inaccurate beliefs

regarding the agents in at most one of the cells. The larger k is, the larger the share of

the population about whom the agents’ estimates are accurate. Thus, k is a measure

of the agents’ mistakes. The next corollary formalizes this discussion.

Corollary 3 In a symmetric ABEE, agent v correctly assesses the probability with

which agent w ∈ int(Pj) accepts her/him as a partner if and only if av 6∈ int(Pj).

Once monotonocity is established, Lemma 2 holds as its proof is independent of

the behavioral model (it relies only on the cutoffs being monotone). Hence, sv < v is

both necessary and sufficient for marriage in equilibrium. We now derive the formula

for sv, which does depend on the behavioral model.

9If av = p
j

or av = pj , then agent v correctly predicts the behavior of all agents with the possible

exception of agent av.
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An agent who uses an acceptance cutoff v ∈ Pj and whose opportunity value is

v rejects all agents who belong to lower cells and, by Corollary 3, expects agents in

higher cells to reject her/him. Thus, our agent understands that mutual acceptance is

only possible when meeting agents who belong to Pj.

Let v ∈ Pj. The share of agents in Pj that an agent with an acceptance cutoff v

accepts is k(F (pj)−F (v)). The probability of meeting a member of Pj is µ
k
. With an op-

portunity value of v, the agent expects to be accepted by each member of Pj with prob-

ability k(F (v)−F (p
j
)). Thus, an agent with an acceptance cutoff v and an opportunity

value v expects mutual acceptance with probability µk(F (v) − F (p
j
))(F (pj) − F (v))

and, conditional on marriage, an expected payoff of E[w|v < w < pj]. Hence, for every

v ∈ Pj,

(7) sv =
δµk(F (v)− F (p

j
))(F (pj)− F (v))E[w|v < w < pj]

1− δ(1− µk(F (v)− F (p
j
))(F (pj)− F (v)))

Note that sp
j

= 0 = spj and that (7) is continuous within each category. Thus,

the condition for marriage is always satisfied at the boundaries of each cell, and, in

particular, at v and v. Hence, only agents with medium pizzazz may remain single

forever.

In the next result, we use (7) and Lemma 2 to obtain comparative statics. As in

the previous section, when the market becomes less frictional, the share of agents who

search indefinitely increases and, when search frictions vanish, the market collapses.

Proposition 6 The share of agents who marry in a symmetric ABEE weakly decreases

in µ and δ and converges to 0 when δ goes to 1.

This result shows that the market collapses as search frictions vanish even when

agents do not expect to marry agents who are much more desirable than themselves.

This is because, when search frictions are sufficiently small, av and v belong to the

same cell. Thus, agents misestimate the probability with which they are accepted only

with regard to agents who belong to the same cell as themselves. Hence, in an ABEE,

when search frictions vanish, the agents’ expectations are realistic in the sense that

they do not expect to marry agents who are out of their league.

ABEEs can be constructed in a similar way to partially cursed equilibria. As the

proof of existence is similar to the proof of Proposition 4, it is omitted.
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4 Concluding Remarks

We studied a model of the marriage market in which the participants’ reasoning is

coarse. In equilibrium, individuals who are more desirable have higher standards and

agents vary in their perception of this correlation. Agents who underestimate it over-

value their prospects in the market as they put too much weight on the possibility of

marrying highly attractive individuals. As a result, they set standards that are too

high and search longer than is optimal. In equilibrium, this leads to prolonged single-

hood and may even result in an eternal search. Our results imply that when agents are

not fully rational, technological advances that thicken markets and enable faster and

more efficient search can exacerbate the agents’ biases and make them overall worse

off.

Throughout the analysis we assumed that agents who marry obtain the pizzazz of

their spouse or, in Burdett and Coles’ (1997) words, “Looking in the mirror to admire

one’s own pizzazz does not increase utility.” While this is natural in some contexts,

in others there is some complementarity between partners. The main results and

intuitions of the paper hold in many of these settings (e.g., when the payoff function is

multiplicatively separable, as analyzed in Eeckhout, 1999). In fact, as long as agents

with higher pizzazz have higher standards, which is necessary in any form of assortative

mating, our qualitative results hold.

Although we use the marriage terminology in this paper, we wish to stress that the

model and the main insights have implications for the labor market as well. As in the

marriage market, new search technologies have changed the way people search for a

job. For example, social networks such as LinkedIn enable employers and job-seekers

to match faster than ever before. In the context of job search, additional factors may

come into play as employers and potential hires can negotiate wages. However, as

long as utility is not fully transferable and the job-seekers’ preferences over employers

are correlated, there will be some vertical heterogeneity and our insights will remain

valid. In particular, as the market becomes less frictional, it can be more difficult for

job-seekers and employers to match.
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5 Appendix: Proofs

Proof of Lemma 1. Let v < w. Since agents use cutoff strategies, it follows that

Av ⊆ Aw. Hence, av ≤ aw. Moreover, Av ⊆ Aw also implies that γv(·) ≤ γw(·). Hence,

if agent w uses agent v’s optimal acceptance cutoff âv, then w will obtain a (perceived)

expected payoff of at least U?
v . Therefore, U?

w ≥ U?
v and, hence, âw ≥ âv.

Proof of Lemma 2. In a symmetric equilibrium, if agent v rejects matches with

agents of the opposite sex whose pizzazz is v, then v is rejected by agents with pizzazz

v on the other side of the market as well. That is, âv > v implies that av < v. By

the same logic, âv = v implies that av ≥ v and âv < v implies that av ≥ v. Note that

agent v marries in finite time if and only if âv < av. Thus, agent v marries in finite

time if and only if âv ≤ v ≤ av, with at least one strict inequality.

Note that, given an opportunity value of av = v, an agent can obtain a (perceived)

discounted expected payoff of sv by using an acceptance cutoff of v, but this is not

necessarily optimal. That is, if av = v, then δU?
v ≥ sv. As U?

v is strictly increasing

in av, it follows that av > v implies that δU?
v > sv. Since âv = max {v, δU?

v }, av = v

implies that âv ≥ sv and av > v implies that âv > sv.

In order to show necessity, let sv ≥ v and split the analysis into three cases: av < v,

av > v, and av = v. First, note that if av < v, the necessary condition for marriage
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âv ≤ v ≤ av is violated. Second, let av > v. As we showed in the previous paragraph,

av > v implies that âv > sv. Since sv ≥ v, we obtain a contradiction to the necessary

condition for marriage âv ≤ v ≤ av. Third, let av = v. As we showed in the previous

paragraph, av = v implies that âv ≥ sv. Since sv ≥ v and av = v, it follows that

âv ≥ av, which contradicts the necessary condition for marriage av > âv.

In order to show sufficiency, let sv < v. We start by proving the result under the

assumption that v > v and then take care of the case where v = v. As before, we split

the analysis into three cases: av < v, av = v, and av > v. First, let av > v. Symmetry

implies that âv ≤ v such that the sufficient condition for marriage av > âv holds.

Second, let av = v. We now show that, if sv < v and v > v, then av = v implies

that âv < v such that the sufficient condition for marriage âv < av holds. Due to

symmetry, it cannot be that av = v and âv > v both hold. We now show that it is also

impossible that av = v and âv = v both hold. To see why, note that the optimality

of an acceptance cutoff âv = v given av = v implies that sv = δU?
v in this case. Since

sv < v and âv = v, it follows that âv > δU?
v . As âv = max{v, δU?

v }, it follows that

âv = v. Since âv = v, we obtain a contradiction to the assumption that v > v. In

conclusion, if av = v, it must be that âv < v.

Third, let av < v. Symmetry implies that âv > v. As âv > v, it follows that

δU?
v > v. As U?

v is increasing in av, it follows that increasing the opportunity value to

av = v does not change the inequality δU?
v > v. Thus, an opportunity value of av = v

implies an acceptance cutoff âv > v, in contradiction to the fact that, in a symmetric

equilibrium, av = v implies that âv ≤ v. In conclusion, if sv < v and v > v, then the

sufficient condition for marriage holds as either av > v ≥ âv or av = v > âv.

In order to complete the proof, we show that if sv < v, then agent v marries in

finite time. Assume to the contrary that av = v. Thus, âv > v and δU?
v > v for every

v > v. Denote by z a number such that av = z induces δU?
v = v. Since v > 0, it

follows that z > v. Choose w ∈ (v, z) and note that for any v ∈ (v, âw), it holds that

av ≤ w < z. Thus, for any such v, δU?
v < v, in contradiction to âv > v being part of

an equilibrium. We can conclude that av 6= v. Thus, av > v. By symmetry, âv = v

and the sufficient condition for marriage av > âv holds.

Proof of Proposition 2. From (5), we can see that sv is strictly increasing in δ, µ,

and ψ. Moreover, at the δ = 1 limit, sv converges to E[w|w ≥ v] > v for all v ∈ (v, v).

Thus, the share of agents who satisfy Condition 6 decreases in µ, ψ, and δ, and con-
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verges to 0 when δ goes to 1.

Proof of Proposition 3. This proof consists of three steps. First, we show the

existence of a threshold v1 < v such that agents whose pizzazz is higher than v1 behave

as if they were rational. Second, we establish the existence of a threshold v2 > v such

that âv = v for every v < v2. Lastly, we show that agents whose pizzazz is lower than

v1 overvalue the prospect of remaining single and, if their pizzazz is also greater than

v2, they oversearch.

Due to the search frictions, the agents’ continuation values are bounded by δv.

Hence, in equilibrium, agents whose pizzazz is greater than δv are accepted by all

agents of the opposite sex. Thus, aδv = v. By Lemma 1, in equilibrium, there exists

pizzazz v1 < v such that av = v for v ≥ v1 and av < v for v < v1. Since σw(v) = 1 for

every v ≥ v1 and any w, it follows that γv(w) = 1 for any v ≥ v1 and any w. Thus,

every agent v ≥ v1 forms correct expectations and, therefore, behaves as if (s)he were

fully rational. Note that an acceptance cutoff of v1 is optimal given a belief that one is

accepted by every agent of the opposite sex both under partial cursedness and under

the rational expectations model. Thus, [v1, v] is the top class in Proposition 1.

In order to establish the threshold v2, note that sv = 0 < v. Thus, agents at the

bottom of the distribution marry in equilibrium. Hence, âv = v for some v > v. By

Lemma 1, there exists v2 > v such that âv = v for every v < v2.

Next, we show that agents whose pizzazz is v ∈ [v2, v1) oversearch and that agents

whose pizzazz is lower than v2 behave as if they were fully rational.

First, suppose that av > âv. Consider agent v’s perceived probability of marriage.

In each period, agent v correctly believes that (s)he will accept a match with probability

µ(1 − F (âv)). Agent v also believes that, conditional on accepting the match, (s)he

will be accepted with probability

ψF (av) + (1− ψ)
F (av)− F (âv)

1− F (âv)
.(8)

However, conditional on accepting the match, v is accepted with probability F (av)−F (âv)
1−F (âv)

,

which is smaller than (8) unless âv = v or av = v (in both of these cases, the two

expressions are equal and agent v correctly estimates this probability). Thus, if v ∈
[v2, v1), then (s)he underestimates the time it will take her/him to marry.

Now consider the perceived expected pizzazz of agent v’s partner in a potential
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marriage. Agent v will marry an agent whose expected pizzazz is E[w|âv ≤ w < av].

However, v believes that (s)he will marry an agent whose expected pizzazz is

ψF (av)(1− F (âv))E[w|âv ≤ w] + (1− ψ)(F (av)− F (âv))E[w|âv ≤ w < av]

ψF (av)(1− F (âv)) + (1− ψ)(F (av)− F (âv))
,

which is higher than E[w|âv ≤ w < av], unless av = v, in which case the two expressions

are equal. Thus, if v < v1, then (s)he overestimates the expected pizzazz of her/his

eventual partner.

In conclusion, unless av = v, in which case v is correct, agent v’s perceived dis-

counted expected payoff, U?
v , is higher than the actual discounted expected payoff v

obtains. Thus, whenever the agent chooses an acceptance cutoff âv > v, it is too high

as well (since âv = δU?
v ). It follows that every v ∈ [v2, v1) searches longer than optimal

given av. Finally, if setting a cutoff âv = v is optimal given v’s perceived expected

payoff, then it is also optimal given the correct expected payoff, which is weakly lower.

Hence, every agent whose pizzazz is v ≤ v2 behaves as if (s)he were fully rational.

To complete this part of the proof, consider the case where âv ≥ av. Since

sv = 0 < v, agent v must marry and, therefore, av = âv = v cannot hold in equi-

librium. It follows that av > v and, by monotonicity, av > v for all v > v. Thus,

agent v can marry by setting a low cutoff. However, when âv ≥ av, agent v marries

with probability 0 and gains an actual expected payoff of 0. Thus, the agent’s accep-

tance cutoff is higher than optimal and the agent searches longer than optimal given av.

Proof of Lemma 3. Assume that C is a marriage class and c 6= v. By the definition

of a class, âv ≥ c for any agent v > c. Since C is in a marriage interval, lim
v→c+

âv = c.

There exists a unique pizzazz ac > c such that an acceptance cutoff of c is optimal

given an opportunity value ac. Thus, ac = lim
v→c+

av, and, as a result, âac =c. By

monotonicity, âv = c for any v ∈ (c, ac). This implies that av = ac for all such v.

Therefore, C ′ = [c, ac) is a class.

Assume that C is a singles class and c 6= v. For any v > c, it holds that av ≥ c.

Since C is in a singles interval, lim
v→c+

av = c. There exists a unique acceptance cutoff

âc > c that is optimal given an opportunity value c. By monotonicity, av = c for any

v ∈ (c, âc). This implies that âv = âc for all such v. Therefore, C ′ = [c, âc) is a class.

The proofs of the existence of C ′′ follow the same logic and are omitted for brevity.
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Proof of Proposition 4. We consider each marriage/singles interval separately and

define, for every agent v, an acceptance cutoff âv. First, consider singles intervals such

that sv = v for any pizzazz v in the interval. For each agent in these intervals, set

âv = v. In the remainder of the proof, singles intervals are assumed to contain only

agents with sv > v.

First, we show that, for any opportunity value a ∈ L, there exists an acceptance

cutoff â ∈ L such that â is optimal given a. Let L be a marriage/singles interval that

does not contain v or v, and let a ∈ L and ε ∈ R. Note that L is an open interval.

Define v = a+ ε. Consider v’s discounted perceived expected payoff, δUv, as a function

of ε, assuming that âv = v and av = a. If L is a marriage interval, then for ε = 0,

it holds that v = a and so δUv = sv < v. On the other hand, for ε = l − a, it holds

that v = l and so δUv > l = v (l’s discounted perceived payoff when al = âl = l is l).

If L is a singles interval, then for ε = 0, δUv = sv > v. For ε = l − a, δUv < l = v

(l’s discounted perceived payoff given al = âl = l is l). In either case, the payoff is

continuous in ε and, therefore, for some ε, there exists â ∈ L such that δUâ = â.

Second, consider now the dual exercise: for a given acceptance cutoff â ∈ L, we

prove the existence of an opportunity value a ∈ L that “rationalizes” it. Let L be

a marriage/singles interval that does not contain v or v, and let w ∈ L. If L is a

marriage interval, then let a ∈ [w, l] and find a pizzazz â such that δUâ = â given the

opportunity value a as in the previous paragraph. If a = w, then â < w. If a = l then

â = l > w. By continuity, there exists an a such that â = w (i.e., a rationalizes the

acceptance cutoff w). If L is a singles interval, then let a ∈ [l, w] and find a pizzazz

â such that δUâ = â given the opportunity value a as in the previous paragraph. If

a = w, then â > w. If a = l, then â = l < w. By continuity, there exists an a such

that â = w (i.e., a rationalizes the acceptance cutoff w).

We now use the insights from the first two paragraphs to cover an arbitrary mar-

riage/singles interval with classes. Let L be a marriage/singles interval that does not

contain v or v, and let c0 ∈ L. For k = 1, 2, ..., let ck be the pizzazz for which δUv = ck−1

if âv = ck−1 and av = ck. For n = 1, 2, ..., let cn be the pizzazz for which δUv = c−n

if âv = c−n and av = c1−n. Note that both series {ck}k∈N and {cn}n∈N are bounded

and monotonic, and hence converge to k∗ and l∗, respectively. At each of these limits,

v ∈ {k∗, l∗}, it must hold that v = av = âv. Thus, v ∈ {l, l}. For k ∈ Z, define

Ck = [ck, ck+1). Note that the sets {Ck}k∈Z are disjoint and cover L. Set âv = ck for

any v ∈ [ck, ck+1), âl = l, and âl = l.
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Let L be a marriage/singles interval containing v. Set c0 = v. For any n = 1, 2, ...,

let cn be the pizzazz for which δUv = cn−1 if âv = c−n and av = c1−n. In the case of

c−n ≤ v, set c−n = v and stop the process. Define Cn = [c−n, c−n+1) for n = 1, 2, ... .

As in the previous case, the sets {C−n}n∈N are disjoint and cover L. Set âv = c−n for

any v ∈ [c−n, c1−n) and âv = c−1.

Let L be a marriage/singles interval containing v but not v. Set c0 = v. For any

k = 1, 2, ..., let ck be the pizzazz for which δUv = ck−1 if âv = ck−1 and av = ck. Define

Ck−1 = [ck−1, ck) for any k = 1, 2... . Set âv = ck−1 for any v ∈ [ck−1, ck).

By construction, for any v for which v = sv, av = v. In any other marriage/singles

interval L, if âv = ck for some k, then av = ck+1. Furthermore, all acceptance cutoffs âv

are optimal given their respective opportunity values av. Thus, an equilibrium exists.

The existence of a cutoff δ is implied by Proposition 2.

Proof of Proposition 5. Observe that Lemma 1 still holds (for both sides of the

market). If woman v accepts man ṽ, then every woman whose pizzazz is lower than v

accepts man ṽ and so aṽ ≥ v. By the definition of sv, if aṽ = v, then δUṽ ≥ sv. Since

δUṽ is increasing in aṽ, it follows that, given aṽ ≥ v, it must be that δUṽ ≥ sv. Thus,

δUṽ ≥ sv > v. Hence, man ṽ rejects woman v. It follows that woman v cannot marry

in equilibrium. Hence, she accepts every man she encounters. It follows that no man

ever accepts woman v in equilibrium. By monotonicity, no man ever accepts a woman

whose pizzazz is lower than v.

Proof of Proposition 6. Consider (7) and observe that sv is increasing in δ and µ.

Moreover, when δ goes to 1, sv goes to E[w|v ≤ w ≤ pj] > v for v ∈ int(Pj). Thus, the

share of agents for whom the necessary and sufficient condition for marriage is satisfied

becomes smaller when δ and µ increase and it converges to 0 when δ goes to 1.
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