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Abstract

We study multilateral reallocation of risk when the state of nature is unverifiable,

such that contracts are conditioned on a state-dependent signal (e.g., net earn-

ings in a financial report). A subset of the agents can manipulate the signal’s

realisation at some cost and as a result Pareto-optimal reallocation of risk is pre-

cluded. The agents can write additional bilateral side-contracts that can be used

to incentivise one of the parties to manipulate the signal. Using a novel pairwise

stability notion that takes into account agents’ beliefs about contemporaneous

deviations initiated by their counterparties, we explore the limits of risk-sharing

and risk-bearing.

1 Introduction

It is well known that when economic agents have access to Arrow–Debreu securities,

they can reallocate risk efficiently. In practice, however, state-contingent contracts are

not always feasible, as the state of nature may be unobservable, unverifiable, or hard

to assess to the point where state-contingent contracts are unenforceable or too costly

to implement.

For these reasons, risk is often reallocated by means of contracts that are contingent

on verifiable variables that are informative about the state of nature. For example, as

Duffie and Stein (2015) pointed out, financial benchmarks such as the inter-bank offered

rates “have been heavily used in contracts whose purpose is to transfer risk related
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to fluctuations in general market-wide interest rates.” Other prominent examples are

insurance contracts, which are often contingent on an appraisal rather than on actual

damage, and managerial compensation contracts, which are often contingent on a firm’s

net earnings as they appear in its financial reports rather than contingent on the firm’s

actual performance. In the present paper, we focus on contracts of this kind and refer

to the contractible variable as a signal about the state of nature.

Transferring risk in these types of contracts gives rise to a moral hazard problem

that results from the agents’ ability to manipulate the signal’s realisation by taking

costly actions. Such costly actions include: forging an appraisal or misreporting the

occurrence of an insurable event; deferring recognition of some expenditure to change

a firm’s net earnings at a specific date; inflating future prices in a commodity market

by placing large buy orders in the underlying market; and hiring lobbyists to influence

a governor’s declaration on which a contract depends.

We study reallocation of risk among n > 2 agents. Risk is reallocated by means

of contracts, which are balanced-budget transfers contingent on a signal that reveals

the state of nature. We refer to the collection of these contracts as the multilateral

contract. Some of the agents have the ability to manipulate the signal’s realisation

unilaterally by incurring some cost. When for each agent the cost of manipulating the

signal is greater than the corresponding benefit, the multilateral contract is said to

be incentive compatible (IC), and the signal perfectly reveals the state of nature (i.e.,

there is no manipulation). To illustrate some of the model’s features, we present the

following example.

Example 1 There are two states, high (H) and low (L). Alice and Bob are each

exposed to a negative shock of 100 dollars in state L. There is a risk-neutral insurer

who is willing to share some of the risk for a premium. Risk-sharing contracts are

contingent on an appraisal s ∈ {h, l} made by a certified appraiser. The appraiser’s

report is h in state H and l in state L. Alice and Bob both know the appraiser. In

state H, each of them can pay the appraiser a bribe of 90 dollars so that he will change

his appraisal from h to l. Observe that full insurance is not IC as it incentivises the

agents to bribe the appraiser in state H. Because of the moral hazard, each of them

can receive a coverage of at most 90 dollars. We shall refer to such insurance contracts

as constrained-efficient contracts.

A key feature in this work is that, at the contracting stage, before the state is re-

alised, agents can add new bilateral contracts to the existing multilateral contract with-

out withdrawing from it. We refer to these contracts as side-contracts. The purpose of
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an additional side-contract can be to provide legitimate mutual insurance or to incen-

tivise one of the contracting counterparties to manipulate the signal. Side-contracts

that are signed with the intention that one of the counterparties will manipulate the

signal introduce a new source of instability into multilateral reallocation of risk since

they impose an externality on third parties.

Using Example 1, let us demonstrate how a pair of agents may benefit from the

addition of a side-contract that incentivises one of them to manipulate the signal.

Consider a multilateral contract in which Alice and Bob each receive a coverage of 90

dollars. Recall that this is the maximal coverage that each of them can obtain in an

IC multilateral contract. Both Alice and Bob are better off if, at the contracting stage,

they add a side-contract in which Bob pays Alice a small ε > 0 if and only if s = l.

This side-contract violates Alice’s incentive-compatibility constraint and incentivises

her to bribe the appraiser in state H, which makes Bob better off as he guarantees his

preferred appraisal by paying a small cost of ε. The contract between Alice and Bob

violates the stability of the multilateral contract because it makes both agents better

off when the possibility of ex-post manipulation is taken into account.

An insurer who predicts the side-contract between Alice and Bob will be unwilling

to provide them with coverage since it exposes him to a negative externality imposed

on him by the ex-post manipulation of the appraisal. Bilateral side-contracts may have

a negative effect on a third party due to the contracting parties’ ability to manipulate

the contractible variable ex post. This contractual externality plays a key role in our

model.

Our primary objective is to study the implications of potential manipulations on

the ability to reallocate risk in multilateral environments. To refrain from making

strong assumptions about the contracting process, we take a “cooperative” approach

in the spirit of the network formation literature (see Jackson and Wolinsky, 1996): a

multilateral contract is said to be pairwise stable if no pair of agents is better off adding

a new side-contract (without withdrawing from the existing multilateral contract). The

multilateral contract can be interpreted as the sum of a network of bilateral contracts,

and a deviation from the contract can be interpreted as an addition of a bilateral link

to the prevailing web of contracts.

We show that an IC pairwise stable multilateral contract does not exist in various

configurations of interest. This result follows from the fact that pairwise stability

considers one deviation at a time, which is an implicit assumption that each agent i

who takes part in some deviation believes that there are no additional deviations that

make him worse off if he agrees to take part in the deviation. In particular, pairwise
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stability assumes that i believes that his counterparty to the deviation does not have an

ulterior motive such as another side-contract (with another agent) that is not observed

by i. This assumption is especially restrictive in a multilateral setting as the benefit

of a side-contract is affected by ex-post manipulations by third parties.

We relax the assumption mentioned above by developing a new weaker pairwise

stability notion, which we shall refer to as weak stability. Weak stability incorporates

considerations from the Nash equilibrium refinements literature into a concept of stabil-

ity in the spirit of cooperative game theory. The idea behind weak stability is that each

pairwise deviation can be viewed as if it were initiated by one of the deviating parties,

say, i. An agent j who receives an offer to take part in this deviation conjectures what

other deviation agent i may have initiated with another agent since it has an effect on

the attractiveness of i’s offer. The only restriction we impose on agent j’s conjecture

is that it must rationalise the observed offer. That is, according to j’s conjecture, i’s

offer to j makes i better off. We refer to such a conjecture as a consistent conjecture.

Agent j rejects i’s offer if there exists a consistent conjectured deviation that makes j

worse off if he agrees to i’s offer.

Our main result is that, under mild domain restrictions, weakly stable contracts

are not constrained-efficient. We show that weakly stable contracts exist, but that

the contractual externalities constrain the agents’ ability to transfer risk. It is worth

pointing out that weak stability is defined by using conservative restrictions on the

deviating agents’ beliefs. If instead we were to use a stronger set of restrictions on the

deviating agents’ beliefs, then the amount of risk that could be transferred in a stable

contract would be even lower.

We present two applications of the model in which we examine the implications

of contractual externalities on the volume of risk-sharing. In the first application, we

study a reinsurance market in which external reinsurers provide coverage to primary

insurers who are exposed to an aggregate shock.1 We assume that only some of the

local insurers can manipulate the contractible variable and interpret the share of ma-

nipulators as a proxy for the level of corruption in the economy. For example, a high

proportion of manipulators corresponds to an economy in which “revolving doors” be-

tween the public and private sectors are widespread. We derive a closed-form solution

to the maximal level of risk-sharing that can be sustained by means of a weakly stable

contract and show that it can be significantly lower than the constrained-efficient level

1Reinsurance instruments (e.g., catastrophe bonds) are used to transfer risk resulting from high-
volume events from insurers to reinsurers or the capital market, and their triggers are often conditioned
on state-dependent signals in order to avoid moral hazard in underwriting and claim settlements (see
Doherty, 1997).
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of risk-sharing.

In the second application we study speculative trade among risk-neutral speculators.

Under an assumption that the economy is composed of two equally sized groups of

optimistic and pessimistic agents, we derive a closed-form solution to the maximal

volume of speculative trade that can be sustained by means of a weakly stable contract

and show that it is increasing when the agents’ prior beliefs become more polarised.

This is different from the case of bilateral speculative trade, in which the magnitude

of the difference between the agents’ beliefs has no effect on the volume of speculative

trade due to the absence of contractual externalities.

In both applications, the main message is that the maximal level of risk-sharing (or

risk-bearing) is U-shaped in the share of agents who can manipulate the contractible

variable. That is, when corruption becomes more widespread in the economy, its effect

on the maximal volume of trade is nonmonotone.

Related literature

This article is related to the risk-sharing networks literature. Bramoullé and Kranton

(2007a, 2007b) study risk-sharing network formation models in which agents mitigate

risk by sharing their holdings with linked partners. In these models, the agents trade

off between costly link formation and better risk-sharing. Bloch, Genicot, and Ray

(2008) and Ambrus, Mobius, and Szeidl (2014) consider moral hazard in risk-sharing

networks. In these models, ex post, agents who are supposed to make a transfer may

deviate and refuse to do so. An agent who deviates loses some of his risk-sharing

links. Bloch, Genicot, and Ray (2008) characterise stable risk-sharing networks while

Ambrus, Mobius, and Szeidl (2014) study the extent and structure of risk-sharing.

Laffont and Martimort (1997, 2000) develop a framework that incorporates collusion-

proofness into mechanism design. In these models (as well as in Che and Kim, 2006),

a fictitious third party coordinates the side-contracts between the colluding agents.

Earlier work on this topic focuses on the Vickrey–Clarke–Groves mechanism’s vulner-

ability to collusion (Green and Laffont, 1979; Crémer, 1996). Bierbrauer and Hellwig

(2016) show that coalition-proof mechanisms for public good provision that satisfy a

robustness condition must take the form of a voting mechanism. The implications of

potential collusion have also been studied in the contexts of organisations (Tirole, 1986,

1992; Baliga and Sjöström, 1998; Mookherjee and Tsumagari, 2004; Celik, 2009) and

auctions (Graham and Marshall, 1987; Jehiel and Caillaud, 1998; Marshall and Marx,

2007).
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Eliaz and Spiegler (2007, 2008, 2009) take a mechanism design approach to problems

in which agents are motivated to bet on the state of nature due to differences in their

prior beliefs. In these models, the state is not verifiable and the agents can manipulate

the contractible variable (an action or a profile of actions) by incurring some cost. The

agents’ ability to manipulate this variable creates incentive constraints that restrict

the betting stakes. In Kahn and Mookherjee (1998), an insuree who is exposed to a

private shock can purchase coverage from multiple insurers, where insurance contracts

are negotiated sequentially according to an exogenously given protocol. Since there is

no exclusive dealership and overinsurance may affect the insuree’s incentives to exert

effort (which in turn affects the contracts’ outcomes), some insurers may be reluctant

to provide the insuree with coverage.

Weak stability is related to farsighted stability notions (see, e.g., Harsanyi, 1974;

Chwe, 1994; Ray and Vohra, 2015) that characterise outcomes that are immune to

deviations by players who recognise that their own deviations may trigger a chain of

deviations by other players. In particular, in the context of network formation, pairwise

farsighted stability notions (e.g., Herings et al., 2009; Herings et al., 2019) have been

used to extend Jackson and Wolinsky’s (1996) notion of pairwise stability.2

Farsighted stability differs from weak stability in several aspects. First, under

farsighted stability, deviations are deterred by potential future deviations. Second,

under farsighted stability, the identity of the agent who initiates the deviation has no

effect on the other agents’ beliefs. Third, farsighted pairwise stability notions typically

assume that deviations are observable to agents who are not part of the deviating

coalition (e.g., they allow a deviation by a pair of agents (i, j) to trigger an additional

deviation by a pair of agents k 6∈ {i, j} and l 6∈ {i, j}). Finally, pairwise farsighted

stability notions typically focus on pure network formation games.

Weak stability is also related to the Nash equilibrium refinements literature. Cho

and Kreps (1987) provide a criterion for examining the stability of equilibria in signaling

games based on forward-induction reasoning. Our stability concept employs a similar

logic to coarsen the set of pairwise stable contracts. Pomatto (2018) has applied

forward-induction considerations to deviations in a two-sided matching problem. He

considers given allocations, and models a noncooperative deviation game in which

players use forward-induction reasoning to interpret other players behaviour off the

equilibrium path (all deviations are off the equilibrium path).

The paper proceeds as follows. We present the model in Section 2 and analyse it

2Page et al. (2005) offer a different approach (that allows for deviations by coalitions of any size)
to farsighted stability in networks.
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in Section 3. In Section 4 we present two applications. In Section 5 we discuss some

possible extensions. Section 6 concludes.

2 The Model

There is a set of agents I = {1, ..., n}, n > 2, and a set of states Θ = {L,H}. Each

agent i’s preferences over monetary outcomes are represented by the concave vNM

function ui : R → R. For each i ∈ I let πi denote the probability that agent i assigns

to the event that state H will be realised. We use wi (θ) to denote i’s endowment when

the state of nature is θ ∈ Θ. Let S = {l, h} be a set of signals. We use s to denote

a typical element of S and θ to denote a typical element of Θ. The signal perfectly

reveals the state of nature unless it is manipulated by one (or more) of the agents. The

term “manipulation” will be clarified soon.

Contracts. State-contingent contracts are not available. The agents can write

contracts contingent on the realised signal. A multilateral contract gK : S → Rn sets

budget-balanced transfers within a group of agents K ⊆ I as a function of the realised

signal. We use gKi (s′) to denote the transfer that agent i ∈ I receives according to gK

when s = s′, where gKi (s′) := 0 for each i 6∈ K. For any two contracts gK , ḡK
′
, we

use gK + ḡK
′

to denote the summation of the transfers in the two contracts. That is,

for each s ∈ {h, l},
(
gK + ḡK

′)
i
(s) := gKi (s) + ḡK

′
i (s). We focus on one multilateral

contract that sums all the contracts signed by the agents, and we denote this contract

by g. Denote the set of such multilateral contracts by G. It is useful to use a different

notation for bilateral contracts. A bilateral contract bij : S → R between i and j sets

a transfer bij (s) from j to i contingent on the signal’s realisation. Let bij + bkl denote

a contract that sums the transfers made in the two bilateral contracts bij and bkl.

Manipulation. After the state is realised, each agent i ∈ M ⊆ I can unilaterally

change the signal’s realisation from s ∈ {h, l} to s′ 6= s by paying a cost of c > 0. We

assume that the cost of manipulation is symmetric both across signals (i.e., the cost

of changing the signal from h to l equals the cost of changing the signal from l to h)

and across agents (i.e., all members of M incur the same cost of manipulation). We

discuss the relaxation of the symmetry assumption in Section 5. For each g ∈ G, let

PM (g) = {m ∈M : |gm (h)− gm (l) | > c} be the set of potential manipulators.

A multilateral contract g is said to be incentive compatible (IC) if PM (g) = ∅.
When g is IC there is no manipulation such that s = h if and only if θ = H. We make

two substantive assumptions regarding the signal’s realisations that result from multi-

lateral contracts that are not IC. The first assumption is that if all of the agents whose
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incentive-compatibility constraints are violated prefer one realisation to the other, then

they manipulate the signal to that realisation when necessary (e.g., when the state is

H and their preferred realisation is l) and one of them incurs a cost of c. If there is no

manipulation (e.g., when the state is H and their preferred realisation is h), no cost is

incurred.

Assumption 1 For every multilateral contract g ∈ G such that PM (g) 6= ∅, if

gm (h) > gm (l) (respectively, gm (h) < gm (l)) for every m ∈ PM (g), then s = h

(respectively, s = l). Moreover, if s = l (respectively, s = h) and θ = H (respectively,

θ = L), then one member of PM (g) incurs a cost of c.

The second assumption pertains to the case in which the set of potential manipula-

tors, PM (g), includes exactly two agents, and these agents prefer different realisations

of the signal. In this case, we assume that the signal is independent of the state. We

also assume that the agent whose preferred realisation matches the signal incurs a cost

of c. In other words, we assume that the two agents try to impose their preferred

realisation in each possible state of nature and that the probability of success is in-

dependent of the state. The agent who succeeds in imposing his preferred realisation

incurs a cost of c.

Assumption 2 For each multilateral contract g ∈ G and each pair of agents m,m′ ∈
M , if PM (g) = {m,m′} and gm (h) − gm (l) > c > −c > gm′ (h) − gm′ (l), then

Prob {s = h|θ = H, g} = Prob {s = h|θ = L, g} and agent m (respectively, m′) incurs

a cost of c if and only if s = h (respectively, s = l).

Our approach in the present paper is to make elementary reduced-form assumptions

on how the signal is set and who incurs the cost of manipulation. Alternatively, one can

model the interaction at the manipulation stage as a noncooperative game. That is,

one can commit to a specific game form and analyse its equilibria. Note that for a given

game form, different multilateral contracts may induce very different payoff functions as

in other models of pregame contracting (see, e.g., Jackson and Wilkie, 2005). Further,

in the present model, since the set of manipulators can be a proper subset of the set of

agents and we impose no constraint on the multilateral risk-sharing agreements, there

are virtually no restrictions on the different payoff functions that may be induced by

different multilateral contracts. Assumptions 1 and 2 can be supported by a Nash

equilibrium in several noncooperative games; however, in most of these games there

are multiple Nash equilibria.
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The timeline in the model is as follows. First, the agents write signal-contingent

contracts as described above. After the contracting stage, the state of nature is realised.

Subsequently, there is a manipulation stage in which the members of M may try to

affect the signal ’s realisation. Finally, the agents receive transfers according to the

contracts that they have signed and the signal that results from the manipulation

stage.

For each i ∈ I, we use �i to represent i’s indirect preferences over contracts. The

indirect preferences take ex-post manipulations into account. For example, suppose

that g is IC and g′ is not IC: PM (g′) = {j} and g′j (h) − g′j (l) > c. For i ∈ I − {j},
g′ �i g if and only if

πiui (wi (H) + gi (h)) + (1− πi)ui (wi (L) + gi (l))

< πiui (wi (H) + g′i (h)) + (1− πi)ui (wi (L) + g′i (h)) .

Note that in the expression on the RHS, agent i receives g′i (h) in both states since the

signal is manipulated by j. For i = j, g′ �i g if and only if

πiui (wi (H) + gi (h)) + (1− πi)ui (wi (L) + gi (l))

< πiui (wi (H) + g′i (h)) + (1− πi)ui (wi (L) + g′i (h)− c) .

Observe that the manipulation cost c is taken into account only in state L, when j

manipulates the signal. A contract g is said to be individually rational (IR) if each

agent i ∈ I prefers signing it to not signing it. Following is the notion of efficiency that

we use throughout the paper.

Definition 1 A multilateral contract g is said to be constrained-efficient if it is IR,

IC, and it is not Pareto-dominated by another IC multilateral contract.

3 Analysis

Our plan for this section is as follows. First, we present a natural notion of robustness

against pairwise deviations, which we shall refer to as pairwise stability. Second, we

show that IC pairwise-stable multilateral contracts do not exist in two natural settings.

These results lead us to define a weaker notion of pairwise stability, which we shall refer

to as weak stability. Finally, we show that weakly stable multilateral contracts exist

and that they are not constrained-efficient.
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3.1 Pairwise stability

We are interested in multilateral contracts that are robust to pairwise deviations. We

take a “cooperative” approach as it allows us to refrain from making assumptions about

the process whereby the contracts are negotiated. The following notion of stability is

inspired by the network formation literature (see Jackson and Wolinsky, 1996).

Definition 2 A multilateral contract g is said to be pairwise stable if there exists no

contract bij such that g + bij �i g and g + bij �j g.

Observe that in Jackson and Wolinsky’s notion of pairwise stability, every two agents

are either connected to each other or not. That is, the conventional definition of

pairwise stability refers to binary links. Our notion of stability is slightly different

from that of Jackson and Wolinsky since here bilateral contracts are vectors that specify

budget-balanced transfers between contracting agents.

We illustrate the inherent instability in multilateral contracting using two natural

settings: speculative trade among risk-neutral agents and risk-sharing among risk-

averse agents. In the first setting, the agents trade to increase their exposure to the

state of nature because of the difference in their prior beliefs. In the second setting,

the agents trade to reduce their exposure to the state of nature because of their risk

aversion. We show that in both of these settings, there exists no multilateral contract

that is both IC and pairwise stable.

Proposition 1 Let n > 3; suppose that πi 6= πj for each pair of agents i 6= j, and

assume that for each i ∈ I, ui is linear. Then, there exists no multilateral contract g

that is both IC and pairwise stable.

Proposition 1 establishes that trade motivated purely by different prior beliefs must

result in a multilateral arrangement that is either not IC or not pairwise stable. The

proof shows that if the multilateral contract is not constrained-efficient, then there are

two agents who are better off writing a side-contract that increases their exposure to

the state. If the multilateral contract is constrained-efficient, then the stakes of the

contract are high (i.e., the agents’ exposure to the signal is high) such that there is a

pair of agents who are better off writing a side-contract with the intention that one of

them will manipulate the signal ex post.

Proposition 2 considers a risk-sharing economy in which the agents’ primary goal

is to reduce their exposure to the state of nature. We now impose two mild domain

restrictions. We refer to the first restriction as richness. In our model, there are four
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possible “types” of agents: manipulators or nonmanipulators with positive or negative

initial exposure to the state of nature (agent i’s initial exposure is wi (H) − wi (L)).

We consider an economy that contains at least one agent of each type.

Definition 3 The economy is said to satisfy richness if there are two agents m,m′ ∈
M such that wm (H)−wm (L) > 0 > wm′ (H)−wm′ (L) and two agents i, i′ 6∈M such

that wi (H)− wi (L) > 0 > wi′ (H)− wi′ (L).

Note that richness rules out purely aggregate shocks (see, e.g., Example 1). We shall

relax richness and study aggregate shocks in Section 4. We refer to the second restric-

tion as nontriviality. The latter restriction is an assumption that the manipulation cost

is small in the sense that it is lower than the initial exposure of at least two members

of M to the state of nature. Since the agents’ primary goal in this case is to reduce

their exposure to the state of nature, it follows that when the manipulation cost is very

high with respect to the agents’ initial exposure to the state, manipulation becomes

irrelevant and the model collapses to a conventional risk-sharing economy.

Definition 4 The economy is said to satisfy nontriviality if there exist two agents

m,m′ ∈M such that wm (H)− wm (L) ≥ c and wm′ (L)− wm′ (H) ≥ c.

Proposition 2 For each i ∈ I, let πi = π ∈ (0, 1) and let ui be strictly concave. If

nontriviality and richness are satisfied, then there exists no multilateral contract g that

is both IC and pairwise stable.

The proof of Proposition 2 establishes that multilateral contracts that provide in-

efficient coinsurance are not pairwise stable because there is always at least one pair

of agents who are better off coinsuring. The proof also shows that if the multilateral

contract is constrained-efficient, then there is at least one pair of agents who are better

off writing a side-contract that incentivises one of them to manipulate the signal.

Propositions 1 and 2 demonstrate the instability that is inherent in multilateral

contracting. They suggest that pairwise stability, which is widely used in the contexts

of matching and network formation, cannot be used to study the formation of networks

of contracts where the contractible variable can be manipulated.

The notion of pairwise stability considers the addition of one contract at a time,

which is an implicit assumption that when a pair of agents deviate by writing a side-

contract bij, each of the deviating agents holds a belief that there is no other deviation

that will make him worse off if he agrees to bij. This assumption is particularly re-

strictive since the attractiveness of a contract (and, in particular, of taking part in

a deviation) is affected by the existence of side-contracts between other agents that
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may create an incentive to manipulate the signal for some of these agents. An agent

i who takes part in a deviation from the existing multilateral contract may suspect

that his counterparty to the deviation (who has already shown a tendency to steer

away from the norm) has an ulterior motive such as an additional side-contract (with

another agent) that makes i worse off if he agrees to take part in the deviation. In the

next subsection, we coarsen pairwise stability by developing a weaker pairwise stability

notion that relaxes this implicit assumption and takes into account suspicion of agents

who initiate deviations from the multilateral contract.

3.2 Weak stability

Let us consider a possible deviation bij. It can be viewed as if it were initiated by

one of the two agents, say, i. Pairwise stability includes an implicit assumption that j

believes that i did not initiate any contemporaneous deviation bik that makes j worse

off if he agrees to i’s offer to deviate. Before we relax this assumption, we present an

example in which healthy suspicion of i’s motivation is relevant.

Example 2. Let I = {1, ..., 8}, π1 > ... > π8, ui (z) = z for each i ∈ I, and

M = {1, 2, 3, 6, 7, 8}. The table summarises the agents’ transfers in the contract g.

Agent 1 2 3 4 5 6 7 8

gi (h)− gi (l) c c c 0 0 −c −c −c

We present two side-contracts that violate the pairwise stability of g. The first side-

contract is a bet between agents 4 and 5. We show that when this bet is initiated by

agent 4, then agent 5 has reason to suspect that agent 4 signed an additional contract

with a third agent k, thereby incentivising k to manipulate the signal ex post.

Suppose that agent 4 initiates a side-contract b45 such that b45 (h) > 0 > b45 (l).

Agent 5 might suspect that agent 4 has initiated another side-contract b34 such that

b34 (h) = ε > 0 = b34 (l), that is, a deviation in which agent 4 incentivises agent 3 to

manipulate the signal from l to h by paying him ε > 0 if and only if the realised signal

is h. If ε is sufficiently small, then g + b34 + b45 �4 g + b45 (i.e., given b45, the contract

b34 makes agent 4 better off). Agreeing to b45 exposes agent 5 to a negative externality

imposed by agent 3’s manipulation of the signal (as a result of b34). Note that, given

b34, agent 5 is worse off agreeing to b45.

We now present a second deviation in which agents 6 and 7 write a side-contract

with the intention that agent 7 will manipulate the signal from h to l in state H.

When agent 6 initiates such a deviation, agent 7 may suspect that agent 6 has an
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ulterior motive in the form of an additional side-contract with agent 8. The conjectured

contract between agents 6 and 8 incentivises agent 6 to manipulate the signal himself.

Agent 7 suspects that agent 6 is using their side-contract b76 to make him manipulate

the signal and pay the manipulation cost instead of doing so himself. That is, agent 7

suspects that agent 6 is trying to free-ride on him.

Suppose that agent 6 initiates a side-contract b76 such that b76 (l) = ε > 0 = b76 (h).

That is, agent 6 makes an offer to agent 7 that is supposed to break 7’s indifference

and incentivise him to manipulate the signal from h to l in state H. Agent 7 may

suspect that agent 6 has also initiated a side-contract b68 such that b68 (s) = b76 (s) for

each s ∈ S. Observe that g6 (l)− g6 (h) + b68 (l)− b68 (h) = c+ ε > c. By Assumption

1, under g + b68, the signal is s = l for each θ ∈ {H,L}. If ε is sufficiently small,

then g + b68 + b76 �6 g + b68 since the manipulation cost is paid by agent 7 instead

of agent 6. That is, the contract b76 that is observed by agent 7 can be rationalised

by the conjectured contract b68. Note that the realised signal is identical in both cases

(i.e., whether or not agent 7 agrees to b76). However, the identity of the agent who

pays for the manipulation is different. Agreeing to b76 makes agent 7 pay the cost of

manipulation instead of agent 6 paying this cost. If ε is small relative to c, agent 7 is

worse off agreeing to agent 6’s offer to deviate.

We now present a notion of stability that takes into account the suspicion motive

presented above. This notion involves suspicion of agents who break the norm and

initiate deviations from the existing multilateral contract. Given a multilateral con-

tract g and an offer to deviate and sign a side-contract bij, made by i, βj (bij, g) ∈
{bik|k ∈ I − {i, j}} ∪ ∅ denotes agent j’s belief about an additional contemporaneous

offer that i has made to another agent. We implicitly assume that agent j cannot

observe deviations that do not include him. If g + βj (bij, g) + bij ≺j g + βj (bij, g),

then j has an incentive to reject i’s offer. In this case, we say that the deviation bij

is blocked by βj (bij, g). We shall refine the beliefs that agent j is allowed to hold by

imposing a consistency requirement.

Definition 5 A belief βj (bij, g) is said to be consistent if g + βj (bij, g) + bij �i g +

βj (bij, g).

Agent j’s belief βj (bij, g) about the other contract signed by i is consistent with the

contract bij that agent j observed if the addition of bij to g + βj (bij, g) makes agent i

better off.
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We view consistency as a mild restriction that any reasonable belief must satisfy.3

There are several ways to refine the set of admissible beliefs even further. For instance,

it is possible to add a requirement that agent j’s conjectured contract renders both

i and k better off (such a requirement would make it necessary for us to specify k’s

beliefs). Placing additional constraints on the set of permissible beliefs would enlarge

the set of potential deviations. Thus, our conservative approach results in a relatively

simple framework and it allows us to interpret our results as the limits to risk-sharing

and risk-bearing.

Underlying the notion of consistency are forward-induction considerations in the

spirit of the Nash equilibrium refinements literature and, in particular, the intuitive

criterion (Cho and Kreps, 1987). If we think of the conjectured deviation as the

“type” of a deviation’s initiator i, then consistency implies that an offer’s receiver j

must believe that the type of the initiator is one that can benefit from making this offer.

Thus, weak stability incorporates considerations from the Nash equilibrium refinements

literature into a notion of stability in the spirit of cooperative game theory.

Definition 6 A contract g is said to be weakly stable if, for each i ∈ I and contract bij

such that g+bij �i g, there exists a consistent belief βj (bij, g) such that g+βj (bij, g) �j
g + βj (bij, g) + bij.

Observe that a deviation consists of a bilateral contract and the agent who initiates the

contract. The same contract is treated differently when the identity of its initiator is

different. If g+ bij �i g and g+ bij �j g, then the weak stability of g requires that the

side-contract bij be blocked both by a consistent belief βj (bij, g) and by a consistent

belief βi (bij, g).

Discussion: Solution concept

We shall now discuss a few variants of weak stability and their potential implications

for our results. But before we do so, it may be beneficial to discuss the possibility of

using a few “off the shelf” notions of stability to solve the model. For example, when

considering deviations by a coalition, it is natural to think of cooperative notions such

as the core or the Aumann–Maschler bargaining set (Aumann and Maschler, 1964).

However, such notions cannot be used to examine the effect of adding new contracts to

an existing set of contracts as the idea underlying such notions is that coalitions deviate

3A consistent belief need not exist. For example, agent j cannot form any belief that is consistent
with a side-contract bij in which i pays j the same positive amount in both realisations of the signal.
Such cases are of minor interest since side-contracts that cannot be rationalised do not violate the
pairwise stability of the multilateral contract.
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to a state of autarchy. This is also the idea underlying the self-enforcing risk-sharing

agreements in Genicot and Ray (2003). Concepts such as strong Nash equilibrium (Au-

mann, 1959), coalition-proof Nash equilibrium (Bernheim, Peleg, and Whinston, 1987),

and coalitional rationalisability (Ambrus, 2006) can capture the idea that a coalition

of agents deviates while agents who are not members of the deviating coalition do not

change their behaviour. However, as these concepts are noncooperative, they require

strong assumptions about the way contracts and deviations are negotiated. Moreover,

the existence of a strong Nash equilibrium or a coalition-proof Nash equilibrium is not

guaranteed.

Cancelling contracts unilaterally

Weak stability does not include the possibility of unilaterally cancelling a signed con-

tract. Allowing agents to cancel a previously signed contract allows for more deviations

than the present notion of stability does. However, it does not add new beliefs that

can disqualify deviations. To see this, consider an agent j who receives an offer to sign

a bilateral contract with an agent i and rejects it based on a conjecture that i cancelled

a contract bik, k ∈ I − {i, j}. This belief is equivalent to a belief that i and k wrote

a side-contract b̂ik such that b̂ik (s) = −bik (s) for each s ∈ S. In fact, it is possible

to show that unilateral cancellation of contracts does not change any of our results.

However, incorporating it into the model would require us to elaborate on the structure

of the multilateral contract and this would significantly complicate the exposition.

Beliefs that consist of a profile of side-contracts

Under weak stability, the belief formed by an agent who receives an offer to deviate con-

sists of one additional side-contract. Our focus on IC contracts allows us to check only

two deviations (one real and one conjectured) such that we can make relatively general

assumptions about the set of admissible contracts and the manipulation function.

Alternatively, we can let an agent who receives an offer to deviate hold a belief that

consists of a profile of side-contracts. To do so, we need to extend our assumptions

about the manipulation function in order to fully pin down the outcomes in cases in

which there are more than two agents whose incentive-compatibility constraints are

violated. There are natural extensions of our assumptions that do not change the

analysis or the main insights that are gained from the model.

Existence and Main Result

Proposition 3 (Existence) Suppose that |M | ≥ 2. There exists a contract that is

weakly stable, IC, and IR.
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The proof shows that the null contract is always weakly stable, which illustrates

how mild the consistency requirement is. The set of weakly stable contracts typically

includes other contracts as well, as we shall illustrate in the next section. The multi-

plicity of weakly stable contracts is not surprising as even stronger concepts such as

pairwise stability do not guarantee uniqueness in most settings (e.g., matching and

network formation). Different weakly stable contracts may induce different levels of

risk-sharing and risk-bearing. In the next section, we shall explore the limits to the

volume of trade that can be obtained by means of weakly stable contracts.

Proposition 4 is the present article’s main result. It emphasises the tension between

stability and efficiency in the context of a conventional risk-sharing economy. The result

shows that despite the weakness of the solution concept and the fact that the set of

weakly stable contracts can be large, under fairly general conditions, there exists no

contract that is both weakly stable and constrained-efficient.

Proposition 4 (Main result) Suppose that for each i ∈ I it holds that πi = π ∈
(0, 1) and ui is strictly concave. Moreover, assume that richness and nontriviality are

satisfied. If g is weakly stable, then it is not constrained-efficient.

In the proof we describe one deviation that cannot be blocked by any consistent

belief and show that if the multilateral contract is constrained-efficient, then this de-

viation exists. The deviation includes a side-contract by which an agent who can

manipulate the signal colludes with an agent who cannot do so in order to set the

signal to their preferred realisation ex post. In the collusive side-contract, the agent

who cannot manipulate the signal makes positive signal-contingent payments to the

manipulator. These payments incentivise the latter to manipulate the signal ex post,

if necessary, since they violate his incentive-compatibility constraint.

The fact that the above deviation involves agents with heterogeneous strategic capa-

bilities plays a key role. In particular, it is important that the deviation is initiated by

an agent who cannot manipulate the signal. The inability of the deviation’s initiator to

manipulate the signal ex post affects the beliefs held by the receiver of an offer to sign

a side-contract. Intuitively, it is harder for the receiver to suspect that the initiator

has an ulterior motive when the initiator is not a manipulator. In the present model,

agents are suspicious of offers to deviate made by manipulators and are less inclined

to accept such offers.

In order to illustrate this, suppose that agent i 6∈ M offers agent m ∈ M the

opportunity to sign a side-contract with the intention that m will manipulate the signal

ex post. Since i is not a manipulator, agent m will not suspect that if he rejects i’s offer,
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then i will manipulate the signal himself. If, on the contrary, i were a manipulator,

then m might reject a similar offer to deviate based on the belief that if he rejects i’s

offer then i will manipulate the signal himself. For example, m might suspect that i has

an ulterior motive in the form of another side-contract that incentivises i to manipulate

the signal ex post (i.e., m might believe that i is trying to free-ride on him and make

him pay the cost of manipulation ex post instead of i doing so himself).

4 Applications

In this section, we present two applications of the model. In the first application we

study risk-sharing in a reinsurance market and in the second application we study risk-

bearing when agents are motivated by different prior beliefs. The critical parameter

in both applications is the proportion of agents who can manipulate the contractible

variable. The main message of both of the applications is that the maximal level of

risk-sharing (or risk-bearing) that can be sustained using a weakly stable contract is

U-shaped (or V-shaped) w.r.t. the share of manipulators. That is, an increase in the

proportion of manipulators does not necessarily imply a reduction in the volume of

trade that can be sustained by means of a weakly stable contract.

4.1 Reinsurance

We study a reinsurance market in which local insurers who are exposed to a local shock

receive coverage from external reinsurers who are not directly exposed to the shock.

The contractible variable is a local regulator’s declaration of a state of emergency.

Reinsurance contracts and instruments (e.g., catastrophe bonds) are typically contin-

gent on such state-dependent signals and not on actual losses incurred by insurers, in

order to prevent moral hazard problems in underwriting and claim settlements (see

Doherty, 1997).

We assume that some of the local insurers can manipulate the contractible variable

by lobbying the regulator and that the external insurers cannot do so. We interpret

the fraction of local insurers who have the ability to influence the regulator’s decision

as a proxy for the level of corruption in the economy. That is, the larger the fraction

of insurers who can access the regulator, the more widespread the corruption. We

examine how the maximal level of coverage that can be provided to the local insurers

using an IR, IC, and weakly stable contract is affected by the primitives of the model.

We partition the set of agents I into a set of local insurers L and a set of external
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reinsurers E and assume that M ⊆ L (the results in this section are robust to letting

the external insurers manipulate the signal by incurring some cost as long as there

are sufficiently many such reinsurers). To capture the idea that the local insurers are

exposed to the same high-volume shock, we set wi (H)−wi (L) = w ≥ c for each i ∈ L.

We shall assume that the cardinality of E is large relative to that of L such that the

external reinsurers can absorb all the risk in the economy. Specifically, we assume that
w
c
< |E|
|L| . This condition implies that even if the members of E were to provide full

coverage to the members of L (and spread this coverage equally among them), each

i ∈ E would hold a position gi (h)− gi (l) ≤ c. Observe that richness and nontriviality

do not hold since the agents face an aggregate shock.

To avoid frictions arising from the discreteness of L, we assume that there are

many local insurers and denote the share of manipulators |M ||L| by α. For the sake of

tractability, we assume that the local insurers exhibit constant absolute risk aversion

(CARA). That is, for each i ∈ L, ui (z) = −exp (−γz), γ > 0. To simplify the

exposition, it is also assumed that each i ∈ E is risk neutral.4 Observe that under

CARA, an agent’s marginal rate of substitution between wealth in both states is pinned

down by his exposure wi (H) − wi (L) + gi (h) − gi (l); for instance, it is exp[−γw] in

the case where i ∈ L is not covered (i.e., gi (h) = gi (l) = 0). To simplify5 the

exposition, we strengthen Assumption 2 by assuming that prob {s = h|θ = H, g} =

prob {s = h|θ = L, g} = 0.5 for each g ∈ G such that |PM (g) | = 2 and gm (h) −
gm (l) > 0 > gm′ (h)− gm′ (l) for a pair of agents m,m′ ∈ PM (g).

We start by showing that even though richness does not hold, if α ∈ (0, 1), then

weakly stable constrained-efficient contracts do not exist. Then, we show that the

maximal level of risk that can be shared by means of a weakly stable contract is

U-shaped in α. In Appendix B, we provide a closed-form solution to this maximal

level, and show that it can be significantly lower than the constrained-efficient level of

coverage.

The next result is based on an argument similar to the one used in Proposition 4

and does not rely on the CARA assumption.

Proposition 5 If α ∈ (0, 1), then there exists no contract that is both constrained-

efficient and weakly stable.

We now examine the effect of the level of corruption in the economy on the cov-

4As long as the cardinality of E is sufficiently large, all of the analysis goes through under the
assumption that the members of E have the same preferences as the members of L.

5All of the results presented in this section hold when this assumption is relaxed; a full proof is
available upon request.
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erage that the local insurers can obtain. We define the total coverage as
∑

i∈Lmin

{gi (l)− gi (h) , w}, where insurer i’s (i ∈ L) coverage is min {gi (l)− gi (h) , w}. We

now study the maximal total coverage that the local insurers can attain using an IR,

IC, and weakly stable contract as a function of the share of manipulators α.

Proposition 6 Suppose that |M | ≥ 2. There exists an α∗ ∈ (0, 1) such that the

maximal total coverage that can be obtained using an IR, IC, and weakly stable contract

is increasing (respectively, decreasing) in α for α > α∗ (respectively, α < α∗).

Proposition 6 establishes that the maximal total coverage that can be obtained by

means of a weakly stable contract is U-shaped in the share of manipulators. A possible

interpretation of this result is that increasing the level of corruption increases the

maximal level of coverage that can be provided to the local insurers when corruption

is widespread in the economy.

The proof shows that a multilateral contract is weakly stable if and only if for each

pair of agents, i ∈ L −M and m ∈ M , the manipulation cost c is not exceeded by

the sum of the coverage provided to m and i’s willingness to pay to guarantee that

the signal will be l. These constraints are given in (7) in the proof. At the optimum,

each of the manipulators obtains the same coverage gm (l) − gm (h) and each of the

nonmanipulators obtains the same coverage gi (l) − gi (h), which allows us to reduce

these constraints to one constraint, which is given in (9).

Essentially, we maximise a convex combination (with weights α and 1 − α) of

the coverage provided to manipulators and the coverage provided to nonmanipulators

subject to (9), which is concave. Thus, the minimum of the problem with respect to α is

obtained at α? ∈ (0, 1) for which the coverage provided to each manipulator equals the

coverage provided to each local agent who cannot manipulate the contractible variable

(i.e., gm (l) − gm (h) = gi (l) − gi (h)). If α > α?, then the manipulators’ coverage

gm(l)− gm(h) is greater than the nonmanipulators’ coverage gi(l)− gi(h) and the total

coverage is increasing in the share of manipulators α. Analogously, if α < α?, then

the manipulators’ coverage gm(l) − gm(h) is less than the nonmanipulators’ coverage

gi(l)− gi(h) and the total coverage is decreasing in the share of manipulators α.

Comparative statics: Risk aversion

Let us examine the effect of risk aversion on the level of risk-sharing that can be

sustained by means of a weakly stable contract. Fix a contract g and consider the

maximal willingness of an agent i ∈ L−M to pay to guarantee that the signal will be

l, which is given on the RHS of (9). It is lower for greater values of the coefficient of risk
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aversion γ. Intuitively, when agent i ∈ L−M incentivises agent m ∈M to manipulate

the signal by paying him x if s = l, it is as if agent i were giving up on state-dependent

coverage of gi (l) in return for a sure transfer of gi (l)−x. When agent i becomes more

averse to risk, the state-dependent coverage becomes more attractive than the sure

transfer, such that i’s willingness to pay for manipulation decreases. Increasing the

risk-aversion parameter relaxes (9) and allows more coverage to be provided.

Figure 1: c = 8 Figure 2: c = 10

In Appendix B we illustrate the effects of α and γ on the level of coverage by

solving the model analytically. The primary goal of the analysis that is provided in the

Appendix is to show that the adverse effect on the level of coverage is of a first-order

magnitude. In Figure 1 we illustrate the maximal average level of coverage for w = 10,

c = 8, |L| = 1000, γ = 0.5, and γ = 1 versus the constrained-efficient level of coverage.

Figure 2 illustrates the results for w = 10 and c = 10, and demonstrates that even

when c = w such that in a constrained-efficient contract the agents are fully covered,

the maximal level of coverage that can be obtained using a weakly stable contract

is significantly lower than the constrained-efficient level of coverage for some values

of α. Note that since side-contracts signed by two manipulators cannot destabilise

a multilateral contract, at the extremes (i.e., for α ∈ {0, 1}), the maximal level of

coverage that can be obtained using an IR, IC, and weakly stable contract coincides

with the constrained-efficient level of coverage.

4.2 Speculative trade

In this subsection, we study reallocation of risk that is motivated by different prior

beliefs about the state of nature. To focus on speculation, we assume that all of the

agents in our economy are risk neutral.
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Remark 1 If there are two agents i, j 6∈ M such that πi 6= πj, then there exists no

constrained-efficient contract.

Remark 1 follows from the well-known fact that risk-neutral agents who hold different

prior beliefs are always better off increasing the stakes of a bet between them (e.g., by

writing an additional side-contract).

We define the volume of speculative trade in a contract g to be
∑

i∈I |gi (h)−gi (l) |.
The next result establishes that the volume of speculative trade that can be sustained

using an IC and weakly stable contract is bounded from above.

Proposition 7 Let |M | ≥ 2. The volume of speculative trade that can be sustained by

means of a contract that is both IC and weakly stable is bounded from above.

The proof relies on the combination of incentive compatibility and weak stability.

First, incentive compatibility bounds the speculative positions of the members of M

(i.e., for each m ∈ M , |gm (h) − gm (l) | ≤ c). Weak stability implies that there is

no nonmanipulator who is willing to pay c − (maxm∈Mgm (h)− gm (l)) to guarantee

that the signal will be h and there is no nonmanipulator who is willing to pay c −
(maxm∈Mgm (l)− gm (h)) to guarantee that the signal will be l. This bounds each

agent i’s (i 6∈M) speculative position from above by max
{

2c
πi
, 2c
1−πi

}
.

Let us impose more structure in order to examine the maximal volume of speculative

trade that can be sustained by means of weakly stable contracts. We assume that there

are two types of agents. These types differ from each other in their prior beliefs about

the state of nature, whereas the share of manipulators in each type of agent is identical.

Formally, we partition I into two disjoint groups of equal size, Ih and I l, and assume

that each i ∈ I l has a prior belief πl and each i ∈ Ih has a prior belief πh > πl.

We assume that |M ∩ Ih| = |M ∩ I l|. As in the previous subsection, we strengthen

Assumption 2 by assuming that prob {s = h|θ = H, g} = prob {s = h|θ = L, g} = 0.5

for each g ∈ G such that both |PM (g) | = 2 and gm (h)− gm (l) > 0 > gm′ (h)− gm′ (l)

for a pair of agents m,m′ ∈ PM (g). To avoid integer problems, let us define α := |M |
|I| .

We now derive a closed-form solution to the maximal volume of speculative trade

that can be obtained using IR, IC, and weakly stable contracts. To examine speculation

among agents with non-common priors, we assume that the following condition is

satisfied.

Condition 1 The multilateral contract g is said to satisfy Condition 1 if gi (h) ≥ gi (l)

for each i ∈ Ih and gi (l) ≥ gi (h) for each i ∈ I l.
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Proposition 8 Let α ∈ (0, 1). The maximal volume of speculative trade that can be

sustained by means of an IR, IC, and weakly stable contract that satisfies Condition 1

is

n ∗max
{
αc,min

{
c (1− α)

1− πh
,
c (1− α)

πl

}}
.

The maximal volume of speculative trade is V-shaped in the proportion of ma-

nipulators. Even though the agents’ preferences are linear, the maximal volume of

speculative trade is either strictly increasing in α or strictly decreasing in α. The max-

imal volume of speculative trade is weakly increasing in πh and weakly decreasing in πl.

That is, for a given cost of manipulation c, when the agents’ beliefs are more polarised,

there is room for more speculative trade.

The intuition behind the V-shaped volume of trade is similar to the intuition behind

the U-shaped level of coverage obtained in Proposition 6. There are two differences,

however. First, the linearity of the utility functions implies that the willingness to pay

to impose one’s preferred signal is linear in one’s speculative position, which implies a

V-shaped upper bound rather than a U-shaped one. The second key difference is that

there are no external agents who can absorb the positions of the members of Ih or I l,

which results in the minimum in the expression for the volume of trade.

The effect of polarisation: A comparison to bilateral trade

As a benchmark, consider the case of n = 2 with risk-neutral agents. The magnitude of

the difference between the agents’ prior beliefs has no effect on the volume of trade. If

πi 6= πj and one of the agents can manipulate the signal, then the volume of trade is 2c.

If πi 6= πj and none of the agents can manipulate the signal, then the volume of trade

is not bounded (i.e., i and j will always want to scale up the stakes of the bets between

them such that there is no upper bound on the volume of trade). In conclusion, the

values of πi and πj do not affect the volume of trade that can be sustained.

When n > 2, there are contractual externalities and the agents’ ex-ante willingness

to pay to guarantee their preferred realisation of the signal ex post plays a key role.

In particular, we can observe in (10) that the sum of the maximal willingness to pay

for manipulation of an agent i 6∈ M and the maximal speculative position held by a

member of M cannot exceed c.

Agent i’s willingness to pay to guarantee that ex post the signal will be l is

πi (gi (l)− gi (h)). It is increasing in πi since i benefits from a collusive side-contract

that guarantees his preferred realisation only when there is ex-post manipulation, that

is, only when the state is H. The less i believes that state H is likely, the less i is
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willingness to pay to impose realisation l ex post and, therefore, the greater the specu-

lative position gi (l)− gi (h) that i can hold. Analogously, the less i believes that state

L is likely, the greater the speculative position gi (h)−gi (l) that i can hold without vi-

olating the weak stability of the contract. Thus, the agents’ beliefs affect the maximal

volume of speculative trade that can be obtained by means of a weakly stable contract.

5 Extensions and Modifications

A private shock

Our assumption about the richness of the economy ruled out cases in which one agent

is exposed to a shock and he is the only one who can manipulate the signal. For

instance, consider insurance contracts, which are typically conditioned on an insuree’s

report about the occurrence of the shock. The cost of reporting that a shock occurred

when it did not occur is c. The interpretation of the assumption that n > 2 is that the

agent can purchase coverage from multiple insurers.

Since the domain is a simple variant of the one presented in Section 4.1, we omit

its formal presentation and instead state the following claim.

Claim 1 Let M = {i} and wj (H) = wj (L) for every j ∈ I − {i}. Every constrained-

efficient contract is pairwise stable.

In a constrained-efficient contract, the agent who is exposed to the shock purchases

coverage from the insurers in return for a premium. Such a multilateral contract

must be pairwise stable since a collusive side-contract that incentivises the agent to

manipulate the contractible variable by submitting a false report cannot make any

insurer better off.

Asymmetric manipulation costs

Let us relax the assumption that the cost of manipulation is identical for different

agents and different signals. Suppose instead that each i ∈ M can change the signal’s

realisation from s to s′ by paying a cost of ci (s→ s′). What is the effect of this

modification on the results obtained in the paper? Propositions 1–4, 5, and 7 do not

directly depend on the symmetry assumptions. Under some adjustments all of these

results hold. For instance, the definition of nontriviality should be adjusted to the

following: an economy is said to satisfy nontriviality if there exist two agents i, j ∈M
such that wi (H)− wi (L) ≥ ci (h→ l) and wj (L)− wj (H) ≥ cj (l→ h).
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More than two states and signals

Let us assume that Θ = {1, ..., t} and S = {1?, ..., t?} and that unless the signal is

manipulated, it is k? if and only if the state is k. Denote the cost of manipulating the

signal from s to s′ by c (s→ s′) and set c (s→ s) := 0. Intuitively, in an IC contract,

it must be that gi (s
′)− gi (s) ≤ c (s→ s′) for each i ∈M and s, s′ ∈ S.

We need to adapt our assumptions about manipulation (that is, the assumptions

about how the signal is set and who incurs the cost of manipulation) to include more

than two states and two signals. One possible modification is that if PM (g) = ∅,
then there is no manipulation. Otherwise, nature chooses a member of M who gets

an opportunity to set the signal to his preferred realisation and to incur the cost of

manipulation, if there is any.

By adapting the nontriviality and richness assumptions to include more than two

states and signals, our negative results remain essentially the same. It is also possible

to show the existence of weakly stable multilateral contracts. Propositions 6 and 8 are

more subtle and require more details.

6 Concluding Remarks

The main contribution of the paper is fourfold. First, we incorporate the idea of ma-

nipulation into multilateral risk-sharing and speculative trade. Second, our substantive

results establish that when it is possible to manipulate the contractible variable, reallo-

cation of risk is highly constrained by the agents’ ability to write side-contracts. Third,

we contribute to the network formation literature by analyzing a network of contracts

with a new externality that results from the ability to manipulate the contractible

variable. Finally, at the methodological level, we introduce a coarsening of pairwise

stability in the tradition of cooperative game theory that incorporates insights from

the Nash equilibrium refinements literature.

Comment: Analogy to network formation

Throughout the paper we studied the properties of one multilateral contract while

ignoring its structure. The assumption that the deviations consist of bilateral contracts

suggests an intuitive structure of the multilateral contract: a network of IR bilateral

contracts. The natural question to ask is whether the restriction to bilateral contracting

constrains reallocation of risk. A result obtained by Rader (1968) shows that this

restriction is not a constraint on the agents’ ability to share risk: there always exists a
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constrained-efficient multilateral contract that can be decomposed into a collection of

IR bilateral contracts.
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Appendix A: Proofs

The proofs of Propositions 1 and 2 are based on the following lemma.

Lemma 1 Let g be an IC multilateral contract. If there exists a pair of agents,

m ∈ M and i 6= m, such that |gm (h) − gm (l) | = c and sign (gm (h)− gm (l)) =

sign (gi (h)− gi (l)), then g is not pairwise stable.

Proof. Without loss of generality, assume that gm (h) − gm (l) = c and gi (h) >

gi (l). Consider a side-contract bmi such that c ≥ bmi (h) > bmi (l) = 0. Observe that

gm (h) − gm (l) + bmi (h) > c and c > gi (h) − gi (l) − bmi (h) > −c. Since g is IC, it

follows that |gz (h)− gz (l) | ≤ c for every z ∈ I − {i,m}. Thus, PM (g + bmi) = {m}.
By Assumption 1, the multilateral contract g + bmi results in s = h regardless of

the state of nature. If bmi (h) is sufficiently close to 0, then g + bmi �i g as πigi (h) +
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(1− πi) gi (l) < gi (h)−bmi (h). Agent m is better off signing the side-contract bmi since

πmgm (h) + (1− πm) gm (l) < πm (gm (h) + bmi (h)) + (1− πm) (gm (h)− c+ bmi (h)).

Since both counterparties are better off signing bmi, g is not pairwise stable.

Proof of Proposition 1

Assume by way of contradiction that g is IC and pairwise stable. First, we focus

on the case where |I − M | ≤ 1. Consider three agents k,m, i ∈ M and without

loss of generality assume that πk > πi > πm. We now show that it must be that

gk (h)− gk (l) = c and gm (l)− gm (h) = c.

Suppose that gm (l) − gm (h) < c and gi (h) − gi (l) < c. We now construct a

side-contract bmi such that g + bmi �i g and g + bmi �m g. Let bmi (l) = ε and

bmi (h) = π̂−1
π̂
ε, where π̂ ∈ (πm, πi). If ε > 0 is sufficiently small, then g + bmi is IC.

Both agents are better off adding the side-contract to g since − (1− πi) ε− πi π̂−1π̂ ε > 0

and (1− πm) ε+πm
π̂−1
π̂
ε > 0. This contradicts the pairwise stability of g and, therefore,

gm (l) − gm (h) = c or gi (h) − gi (l) = c. By the same argument, gi (l) − gi (h) = c or

gk (h) − gk (l) = c. If gk (h) − gk (l) = c and gi (h) − gi (l) = c, then, by Lemma 1, g

is not pairwise stable. Also, if gi (h) − gi (l) = −c and gm (h) − gm (l) = −c, then, by

Lemma 1, g is not pairwise stable. Since g is pairwise stable and IC, it follows that

gk (h)− gk (l) = c and gm (l)− gm (h) = c.

Since n > 3, there is an agent i′ ∈ I−{i,m, k} such that πi 6= πi′ . If gi (h)−gi (l) =

0 = gi′ (h)− gi′ (l); then we can construct a side-contract bii′ (similar to bmi described

above) that makes both i and i′ better off. However, since g is pairwise stable, it

is impossible to construct such a side-contract and, therefore, |gi (h) − gi (l) | > 0 or

|gi′ (h)− gi′ (l) | > 0. Recall that gk (h)− gk (l) = c and gm (l)− gm (h) = c. By Lemma

1, it follows that g is not pairwise stable.

To complete the proof, consider the case where |I −M | > 1. Observe that if there

exist two agents i,m 6∈M such that πi > πm, then there exists a contract bmi, similar to

the contract bmi described above, such that g+bmi is IC, g+bmi �i g, and g+bmi �m g.

Hence, g is not pairwise stable.

Proof of Proposition 2

Suppose that g is IC and pairwise stable. By nontriviality, there exist two agents

m,m′ ∈ M such that wm (H) − wm (L) ≥ c and wm′ (L) − wm′ (H) ≥ c. If gm (l) −
gm (h) < c and gm′ (h) − gm′ (l) < c, then wm (H) + gm (h) − wm (L) − gm (l) > 0 >

wm′ (H)+gm′ (h)−wm′ (L)−gm′ (l). In this case, m and m′ would be better off signing

a side-contract bmm′ in which they provide each other with fair insurance (the stakes
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of the contract bmm′ can be set to be small such that g + bmm′ is IC and there is no

manipulation). It follows that if g is IC and pairwise stable, then gm (l) − gm (h) = c

or gm′ (h)− gm′ (l) = c.

Without loss of generality, assume that gm (l)− gm (h) = c. By Lemma 1, if there

exists an agent j 6= m such that gj (l) > gj (h), then g is not pairwise stable. Thus,

gi (l) ≤ gi (h) for each i ∈ I −{m}. By richness, there exists an agent i 6∈M such that

wi (H)−wi (L) > 0. Since gi (l) ≤ gi (h), it follows that wi (H)+gi (h)−wi (L)−gi (l) >
0. If there exists an agent j 6∈M such that wj (H) + gj (h)− wj (L)− gj (l) < 0, then

i and j are better off writing a side-contract bij in which they provide each other with

fair insurance (note that g + bij is IC as i, j 6∈ M). By richness, there exists an agent

j 6∈ M such that wj (L) > wj (H). By the previous argument, pairwise stability of g

requires that wj (H) + gj (h)− wj (L)− gj (l) ≥ 0. Thus, gj (h) > gj (l).

By nontriviality, there exists an agent m′ ∈M−{m} such that wm′ (L)−wm′ (H) ≥
c. Since there exists an agent i 6∈ M such that wi (H) + gi (h) − wi (L) − gi (l) > 0,

it follows that if g is pairwise stable, then gm′ (h) − gm′ (l) = c (otherwise m′ and i

would be better off writing a side-contract in which they provide each other with fair

insurance without violating m′’s incentive-compatibility constraint).

In conclusion, there exist an agent m ∈ M such that gm (l)− gm (h) = c, an agent

m′ ∈ M such that gm′ (h) − gm′ (l) = c, and an agent j 6∈ M such that gj (h) > gj (l).

By Lemma 1, this is in contradiction to the pairwise stability of g.

Proof of Proposition 3

Let g′ be a multilateral contract such that g′i (h) = g′i (l) = 0 for each i ∈ I. We shall

show that g′ is weakly stable. Consider a side-contract bij such that g′+ bij �i g′. Our

objective is to find a consistent belief βj (bij, g
′) that blocks bij. There are two cases to

examine: (i) g′ �j g′ + bij and (ii) g′ 6�j g′ + bij. Consider case (i) and observe that

βj (bij, g
′) = ∅ is consistent since g′ + bij �i g′. Since g′ �j g′ + bij, it follows that

βj (bij, g
′) = ∅ blocks the deviation bij.

Consider case (ii) and assume that g′ + bij is not IC. Since g′i (h) = g′i (l) = 0

for each i ∈ I, it follows that PM (g′ + bij) ⊆ {i, j}. By Assumptions 1 and 2, if

|PM (g′ + bij) | ∈ {1, 2}, then the realisation of the signal ex post is independent of the

realised state. Since bij induces zero-sum transfers between i and j independently of

the state and both agents are risk averse, we obtain a contradiction to the assumption

that g′ + bij �i g′ and g′ 6�j g′ + bij.

Consider case (ii) and assume that g′+bij is IC. Since g′+bij �i g′ and g′+bij �j g′,
it follows that bij (s) > 0 > bij (s′), where s′ 6= s. Without loss of generality, assume
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that bij (h) > 0 > bij (l), and split the analysis into two separate cases: either i ∈ M
or i 6∈ M . Suppose that i ∈ M and consider the belief βj (bij, g

′) = bik such that

bik (h) − bik (l) = c. Since g′ + bij is IC, it follows that PM (g′ + bik + bij) = {i}.
Moreover, PM (g′ + bik) = ∅. By Assumption 1, in both states, the signal resulting

from g′ + bik + bij is h. Thus,

π (wi (H) + bij (h) + bik (h)) + (1− π) (wi (L) + bij (h) + bik (h)− c) >

π (wi (H) + bik (h)) + (1− π) (wi (L) + bik (l))

and

π (wj (H)− bij (h)) + (1− π) (wj (L)− bij (h)) <

πwj (H) + (1− π)wi (L) .

The first inequality implies that βj (bij, g
′) is consistent (recall that g′i (h) = g′i (l) = 0)

and the second inequality implies that g′ + bik �j g′ + bik + bij.

To complete the analysis, suppose that i 6∈ M and consider a belief βj (bij, g
′) =

bik such that k ∈ M − {j} and bik (l) − bik (h) > c. Since g′ + bij and g′ are IC,

PM (g′ + bik + bij) = PM (g′ + bik) = {k}. By Assumption 1, in both states, the

signal resulting from g′+ bik + bij is h. Moreover, by Assumption 1, in both states, the

signal resulting from g′+ bik is h. Thus, given bik, j (respectively, i) is only affected by

the downside (respectively, upside) of bij. It follows that βj (bij, g
′) is consistent with

bij and g′ + bik �j g′ + bik + bij.

Proof of Proposition 4

The first step of the proof shows that if richness and nontriviality are satisfied and g is

constrained-efficient, then there exist an agent m ∈ M such that |gm (h)− gm (l)| = c

and an agent i 6∈M such that sign (gm (h)− gm (l)) = sign (gi (h)− gi (l)).
Step 1. Nontriviality implies that there exist two agents m,m′ ∈ M such that

wm (H)− wm (L) ≥ c > −c ≥ wm′ (H)− wm′ (L). If gm (l)− gm (h) < c and gm′ (h)−
gm′ (l) < c, then m and m′ can write a side-contract bmm′ in which they provide each

other with fair insurance without violating any IC constraint (i.e., g + bmm′ is IC).

Both m and m′ are better off signing this side-contract. Observe that the constrained

efficiency of g implies that there exists no bilateral contract bmm′ such that g + bmm′

is IC, g + bmm′ �m′ g, and g + bmm′ �m g. It follows that if g is constrained-efficient,

then gm (l)− gm (h) = c or gm′ (h)− gm′ (l) = c.
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Without loss of generality, assume that gm (l) − gm (h) = c. If there exists an

agent i 6∈M such that gi (l) > gi (h), then we have found a pair of agents, m ∈M and

i 6∈M , such that |gm (h)−gm (l) | = c and sign (gm (h)− gm (l)) = sign (gi (h)− gi (l)).
Suppose that for each i 6∈M , gi (h) ≥ gi (l).

By richness, there exists an agent i 6∈M such that wi (H) > wi (L). Since gi (h) ≥
gi (l), it follows that wi (H) +gi (h)−wi (L)−gi (l) > 0. If there exists an agent j 6∈M
such that wj (H)+gj (h)−wj (L)−gj (l) < 0, then i and j are better off writing a side-

contract to provide each other with fair insurance. The side-contract between i and j

does not violate any IC constraint and, therefore, it violates the constrained efficiency

of g (as g+ bij is IC and Pareto dominates g). Hence, if g is constrained-efficient, then

wj (H)+gj (h)−wj (L)−gj (l) ≥ 0 for every agent j ∈ I−M −{i}. By richness, there

exists an agent j ∈ I −M − {i} such that wj (L) > wj (H). Thus, gj (h) > gj (l).

By nontriviality, there exists an agent m′ ∈M−{m} such that wm′ (L)−wm′ (H) ≥
c. Recall that there exists an agent i 6∈M such that wi (H)+gi (h)−wi (L)−gi (l) > 0.

If g is constrained-efficient, then there exists no side-contract bim′ such that: (i) g+bim′

is IC, (ii) g + bim′ �i g, and (iii) g + bim′ �m′ g. If gm′ (h) − gm′ (l) < c, there is

always a side-contract bim′ in which both parties provide each other with fair insurance

that satisfies (i), (ii), and (iii). Thus, the constrained efficiency of g implies that

gm′ (h)− gm′ (l) = c. Since we already found an agent j 6∈M such that gj (h) > gj (l),

the first part of the proof is completed.

Part 2. Suppose that g is constrained-efficient and, without loss of generality,

assume that there exist an agent m ∈M such that gm (h)−gm (l) = c and an agent i 6∈
M such that gi (h) > gi (l). Consider a side-contract bmi such that bmi (h) > bmi (l) > 0.

Clearly, g + bmi �m g. Since g is constrained-efficient and gm (h) − gm (l) + bmi (h) −
bmi (l) > c, it follows that PM (g + bmi) = {m}. By Assumption 1, g + bmi results in

the signal h in both states. If bmi (h) is sufficiently close to 0, then

π (wi (H) + gi (h)) + (1− π) (wi (L) + gi (l)) <

π (wi (H) + gi (h)− bmi (h)) + (1− π) (wi (L) + gi (h)− bmi (h))

and, therefore, g + bmi �i g. It is left to show that there exists no consistent belief

βm (bmi, g) that blocks bmi.

First, if g + βm (bmi, g) is IC, then it cannot block bmi since m receives a positive

transfer from i in both states. Second, suppose that g + βm (bmi, g) is not IC. In this

case, |PM (g + βm (bmi, g)) | = 1. By Assumption 1, the signal that is induced by

g + βm (bmi, g) is either h in both states or l in both states. If it is l in both states,
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then m is better off signing bmi since, by doing so, he guarantees a transfer strictly

greater than gm (l), which is induced by g + βm (bmi, g). If the signal that results from

g + βm (bmi, g) in both states is h, then by Assumption 1, the signal that results from

g+βm (bmi, g)+ bmi is h in both states. This stands in contradiction to the consistency

of βm (bmi, g) since the addition of bmi has no effect on the signal in either state (and

it induces a positive transfer from i to m in both states).

Proof of Proposition 5

Since the local insurers’ preferences satisfy CARA and the reinsurers are risk neutral,

it follows that if g is constrained-efficient, then it must be that wi (H)−wi (L)+gi (h)−
gi (l) = 0 for each i ∈ L −M . Otherwise, there exists another IC contract g′ that is

identical to g except that some additional coverage is provided to an insurer i ∈ L−M
by a reinsurer j ∈ E, such that g′ �i g and g′ �j g. By a similar argument, it must be

that if g is constrained-efficient, then gm (l)− gm (h) = c for each m ∈M .

Suppose that g is constrained-efficient and consider a side-contract bmi such that

i ∈ L −M,m ∈ M, bmi (l) = 2ε > bmi (h) = ε. Observe that PM (g + bmi) = {m}.
By Assumption 1, the signal that results from g + bmi is l (in both states). If ε is

sufficiently close to 0, then g + bmi �i g and g + bmi �m g. That is, both i and m

benefit from this collusion.

It is left to show that there is no consistent belief βm (bmi, g) that blocks bmi. First,

if g + βm (bmi, g) is IC, then it cannot block bmi since m receives a positive transfer

from i in both states. Second, suppose that g + βm (bmi, g) is not IC. Since i 6∈ M , it

must be that |PM (g + βm (bmi, g)) | = 1. By Assumption 1, the signal that is induced

by g+ βm (bmi, g) is either h in both states or l in both states. If it is h in both states,

then m is better off signing bmi since, by doing so, he guarantees a transfer strictly

greater than gm (h), which is induced by g+ βm (bmi, g). If the signal that results from

g + βm (bmi, g) in both states is l, then by Assumption 1, the signal that results from

g+βm (bmi, g) + bmi is l in both states. This stands in contradiction to the consistency

of βm (bmi, g) since the addition of bmi has no effect on the signal in either state (and i

pays 2ε to m in both states).

Proof of Proposition 6

The first step of the proof (Lemmata 2–5) is to show which deviations can destabilise

a multilateral contract, and which deviations cannot do so. We shall now go over all of

the possible deviations and show that a necessary and sufficient condition for the weak

stability of an IR and IC multilateral contract g is that there exists no side-contract

bmi such that m ∈M , i ∈ I −M , bmi (h) , bmi (l) > 0, and g + bmi �i g.
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Lemma 2 shows that we can ignore deviations that include two members of I −M .

Lemma 2 Let g be IC and IR and let i, j ∈ I −M . For each side-contract bij such

that g + bij �i g, there exists a consistent belief βj (bij, g) such that g + βj (bij, g) �j
g + βj (bij, g) + bij.

Proof. Since g is IC and i, j ∈ I −M , it follows that g + bij is IC. Thus, g + bij �i g
implies that bij (h) > 0 or bij (l) > 0. Without loss of generality, suppose that bij (h) >

0. Consider a belief βj (bij, g) = bki such that k ∈M and gk (h)−gk (l)+bki (h)−bki (l) >
c. Since g is IC and i, j 6∈M , it must be that PM (g + bki + bij) = PM (g + bki) = {k}.
By Assumption 1, both contracts, g+ bki+ bij and g+ bki, result in the signal h in both

states of nature. It follows that g + bki + bij �i g + bki and g + bki �j g + bki + bij such

that βj (bij, g) = bki is consistent with bij and blocks it.

Lemma 3 shows that we can ignore deviations that include two members of M .

Lemma 3 Let g be IC and IR, and let m,m′ ∈ M . For each side-contract bmm′

such that g + bmm′ �m′ g, there exists a consistent belief βm (bmm′ , g) such that g +

βm (bmm′ , g) �m g + βm (bmm′ , g) + bmm′.

Proof. There are four possible cases:

1. |gm (h)−gm (l)+bmm′ (h)−bmm′ (l) | > c ≥ |gm′ (h)−gm′ (l)−bmm′ (h)+bmm′ (l) |,

2. |gm′ (h)−gm′ (l)−bmm′ (h)+bmm′ (l) | > c ≥ |gm (h)−gm (l)+bmm′ (h)−bmm′ (l) |,

3. |gm (h)− gm (l) + bmm′ (h)− bmm′ (l) |, |gm′ (h)− gm′ (l)− bmm′ (h) + bmm′ (l) | ≤ c,

4. |gm (h)− gm (l) + bmm′ (h)− bmm′ (l) |, |gm′ (h)− gm′ (l)− bmm′ (h) + bmm′ (l) | > c.

Case 1: Only m’s incentive-compatibility constraint is violated in g + bmm′ . Without

loss of generality, suppose that gm (l) − gm (h) + bmm′ (l) − bmm′ (h) > c. Since g +

bmm′ �m′ g, it follows that

πum′ (wm′ (H) + gm′ (h)) + (1− π)um′ (wm′ (L) + gm′ (l)) <

πum′ (wm′ (H) + gm′ (l)− bmm′ (l)) + (1− π)um′ (wm′ (L) + gm′ (l)− bmm′ (l)) .

Plugging constant absolute risk aversion into the above expression, we obtain inequality

(1), which provides an upper bound for bmm′ (l):

bmm′ (l) <
1

γ
log[

πexp[γ (gm′ (l)− gm′ (h))] + (1− π) exp[γ (wm′ (H)− wm′ (L))]

π + (1− π) exp[γ (wm′ (H)− wm′ (L))]
]. (1)
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We now find a consistent belief βm (bmm′ , g) to block bmm′ . Consider βm (bmm′ , g) =

bm′k, such that k 6∈M , gm′ (l)− gm′ (h) + bm′k (l)− bm′k (h) > c, and gm′ (l)− gm′ (h) +

bm′k (l) − bm′k (h) − bmm′ (l) + bmm′ (h) = c. Under this belief, the side-contract bmm′

has no effect on the signals’ distribution (agent m′’s incentive-compatibility constraint

is violated under g + bm′k and agent m’s incentive-compatibility constraint is violated

under g + bm′k + bmm′). Rather, it affects the identity of the agent who pays for

manipulation as agent m is the one who incurs the cost of manipulation under g +

bm′k + bmm′ . Observe that g + bm′k 6�m g + bm′k + bmm′ (i.e., the belief does not block

the deviation) if and only if

πum (wm (H) + gm (l) + bmm′ (l)− c) + (1− π)um (wm (L) + gm (l) + bmm′ (l)) ≥

πum (wm (H) + gm (l)) + (1− π)um (wm (L) + gm (l)) .

Plugging constant absolute risk aversion into the above expression, we obtain

bmm′ (l) ≥ 1

γ
log[

πexp[γc] + (1− π) exp[γ (wm (H)− wm (L))]

π + (1− π) exp[γ (wm (H)− wm (L))]
]. (2)

Since g is IC, it follows that c ≥ gm′ (l) − gm′ (h) and, therefore, there exists no

contract bmm′ that satisfies both inequalities. It is left to verify that βm (bmm′ , g) is

consistent with bmm′ . This is true if inequality (3) holds:

πum′ (wm′ (H) + gm′ (l) + bm′k (l)− c) + (1− π)um′ (wm′ (L) + gm′ (l) + bm′k (l)) (3)

< πum′ (wm′ (H) + gm′ (l) + bm′k (l)− bmm′ (l))

+ (1− π)um′ (wm′ (L) + gm′ (l) + bm′k (l)− bmm′ (l)) .

One can verify that inequality (3) is implied by inequality (1).

Case 2: Only m′’s incentive-compatibility constraint is violated in g+ bmm′ . With-

out loss of generality, suppose that gm′ (l) − gm′ (h) − bmm′ (l) + bmm′ (h) > c. Since

g + bmm′ �m′ g, it must be that bmm′ (l) < 0. Consider βm (bmm′ , g) = bm′k, where

k 6∈ M and gm′ (l) + bm′k (l) − gm′ (h) − bm′k (h) > c. Observe that PM (g + bm′k) =

PM (g + bm′k + bmm′) = {m′}. Given this belief, the signal that results from both

g + bm′k and g + bm′k + bmm′ is l (in both states) such that bmm′ is simply a transfer

from m to m′. Hence, m’s belief is consistent with bmm′ and blocks it.

34



Case 3: The contract g+bmm′ is IC. Since g+bmm′ �m′ g, it must be that bmm′ (h) <

0 or bmm′ (l) < 0. Without loss of generality, assume that bmm′ (h) < 0 and consider a

belief βm (bmm′ , g) = bm′k such that k 6∈M and gm′ (h)−gm′ (l)+ bm′k (h)− bm′k (l) > c.

By Assumption 1, the signal that results from both g + bm′k and g + bm′k + bmm′ is h

(in both states) such that bmm′ is simply a transfer from m to m′. Hence, βm (bmm′ , g)

is consistent with bmm′ and blocks it.

Case 4: Both agents’ incentive-compatibility constraints are violated under g +

bmm′ . We shall show that g+ bmm′ �m′ g implies that g �m g+ bmm′ such that bmm′ is

blocked by βm (bmm′ , g) = ∅. Without loss of generality, suppose that gm (h)− gm (l) +

bmm′ (h) − bmm′ (l) > c and gm′ (l) − gm′ (h) + bmm′ (h) − bmm′ (l) > c. Observe that

under g, each agent d ∈ {m,m′} obtains a payoff greater than

πud (wd (H) +min {gd (h) , gd (l)}) + (1− π)ud (wd (L) +min {gd (h) , gd (l)}) . (4)

By Assumption 2, under g + bmm′ , (i) the signal is independent of the state, (ii)

agent m incurs a cost of c if s = h, and (iii) agent m′ incurs a cost of c if s = l.

By our additional assumption (the stronger Assumption 2), both signals are equally

likely. Under g + bmm′ , agent m’s payoff is as if, independently of the state, he were

taking part in a lottery that pays with equal probability either gm (h) + bmm′ (h) − c
or gm (l) + bmm′ (l). Agent m′’s payoff is as if, independently of the state, he were

taking part in a lottery that pays with equal probability either gm′ (h) − bmm′ (h) or

gm′ (l) − bmm′ (l) − c. Summing the agents’ expected transfers and additional costs

induced by these lotteries, we obtain

0.5 (gm (h) + gm (l) + gm′ (h) + gm′ (l))− c. (5)

Since g is IC, (5) is at most min {gm (h) , gm (l)} + min {gm′ (h) , gm′ (l)}. This im-

plies that if one of the two agents, m or m′, is better off adding bmm′ to g, then his

counterparty is worse off signing this side-contract since his expected utility is strictly

lower than (4). This is because adding bmm′ guarantees an expected transfer that is

independent of the state and lower than the minimal transfer induced by g. Thus, if

g + bmm′ �m′ g, then g �m g + bmm′ .

Lemmata 4 and 5 consider deviations by a pair of agents i 6∈ M and m ∈ M .

Lemma 4 shows a deviation that cannot be blocked by a consistent belief. Lemma 5

establishes that the deviation presented in Lemma 4 is the only deviation we need to

consider when checking the weak stability of an IC multilateral contract.
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Lemma 4 Let g be IC and let i ∈ I −M,m ∈ M . If g + bmi �i g, bmi (h) > 0, and

bmi (l) > 0, then there exists no consistent belief βm (bmi, g) such that g+βm (bmi, g) �m
g + βm (bmi, g) + bmi.

Proof. Observe that since g + bmi �i g, bmi (h) > 0, and bmi (l) > 0, it must be that

g + bmi is not IC. Since g is IC and i 6∈ M , it follows that PM (g + bmi) = {m}. By

Assumption 1, either g + bmi results in the signal h in both states or it results in the

signal l in both states. Without loss of generality, assume that it results in the signal

h in both states.

If g+βm (bmi, g) is IC, then it cannot block bmi as bmi induces a positive transfer from

i to m in both realisations. If g+βm (bmi, g) is not IC, then |PM (g + βm (bmi, g)) | = 1

and either it results in the signal h in both states or it results in the signal l in both

states. If g + βm (bmi, g) results in the signal l in both states, then m is better off

signing bmi as he obtains either gm (l) + bmi (l) > gm (l) or gm (h) + bmi (h)− c > gm (l)

under g + bmi + βm (bmi, g) (the inequality gm (h) + bmi (h) − c > gm (l) follows from

the fact that PM (g + bmi) = {m} and bmi (h) > bmi (l) > 0). If g + βm (bmi, g) results

in the signal h in both states, then, by Assumption 2, g + bmi + βm (bmi, g) results in

the signal h in both states and, given βm (bmi, g), bmi is a positive transfer from i to m.

Such a belief is inconsistent with bmi as i pays m without the payment affecting the

realisation of the signal ex post.

Lemma 5 Let g be IC, let i ∈ I − M,m ∈ M , and suppose that there exists no

side-contract bmi such that g + bmi �i g, bmi (h) > 0, and bmi (l) > 0. For each

side-contract bmi such that g + bmi �i g and g + bmi �m g, there exist consistent

beliefs βi (bmi, g) and βm (bmi, g) such that g + βi (bmi, g) �i g + βi (bmi, g) + bmi and

g + βm (bmi, g) �m g + βm (bmi, g) + bmi.

Proof. Let g be IC and let bmi be an arbitrary side-contract such that g + bmi �i g
and g + bmi �m g. We shall now find two beliefs βi (bmi, g) and βm (bmi, g) that are

consistent with bmi and that block it. Observe that if both bmi (h) ≤ 0 and bmi (l) ≤ 0,

then g + bmi 6�m g. By the assumption in the premise, it follows that either bmi (h) >

0 > bmi (l) or bmi (l) > 0 > bmi (h). Without loss of generality, let bmi (h) > 0 > bmi (l).

There are two possible cases: either g + bmi is IC or not.

Suppose that g + bmi is IC. Consider agent i and a belief βi (bmi, g) = bmk such

that k 6∈ M and gm (h) − gm (l) + bmk (h) − bmk (l) > c. Note that PM (g + bmk) =

PM (g + bmk + bmi) = {m}. By Assumption 1, the contracts g+ bmi + bmk and g+ bmk

result in the signal h (in both states). Hence, given bmk, the contract bmi is a positive
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transfer from i to m in both states. Thus, βi (bmi, g) = bmk is consistent and blocks

bmi. Consider agent m and a belief βm (bmi, g) = bki such that k ∈ M and gk (l) −
gk (h) + bki (l) − bki (h) > c. Note that PM (g + bki) = PM (g + bki + bmi) = {k}. By

Assumption 1, the signal resulting from g + bmi + bmk and from g + bmk is l (in both

states) such that, given βm (bmi, g) = bki, bmi is a positive transfer from m to i in both

states. Thus, βm (bmi, g) = bki is consistent and blocks bmi.

Let us assume that g+bmi is not IC. Then, PM (g + bmi) = {m}. Since g+bmi �i g
and bmi (h) > bmi (l), it follows that gi (h) > gi (l). First, we find a consistent belief

βi (bmi, g) that blocks bmi. Consider βi (bmi, g) = bmk such that k 6∈ M and gm (h) −
gm (l) + bmk (h) − bmk (l) > c. Observe that PM (g + bmk) = PM (g + bmk + bmi) =

{m}. By Assumption 1, both contracts result in the signal h in both states. Since

under this belief bmi is a transfer from i to m that does not affect the realisation of the

signal, it follows that βi (bmi, g) = bmk is consistent with bmi and g+bmk �i g+bmk+bmi.

It is left to construct a consistent belief βm (bmi, g) that blocks bmi.

Let βm (bmi, g) = bki such that k ∈ M and gk (l) − gk (h) + bki (l) − bki (h) > c.

Furthermore, assume that bki (l) > 0 > bki (h). Note that PM (g + bki) = {k} and

PM (g + bki + bmi) = {k,m}. By Assumption 1, s = l in both states under g + bki

such that m’s transfer is gm (l) regardless of the state. By Assumption 2, given the

multilateral contract g + bmi + bki, m’s transfer minus the cost he incurs is either

gm (l) + bmi (l) < gm (l) (in the case of s = l) or gm (h) + bmi (h) − c (in the case of

s = h). We now show that gm (h) + bmi (h)− c < gm (l).

Since g + bmi �i g, it must be that

πiui (wi (H) + gi (h)) + (1− πi)ui (wi (L) + gi (l)) < (6)

πiui (wi (H) + gi (h)− bmi (h)) + (1− πi)ui (wi (L) + gi (h)− bmi (h)) .

If we add a contract b̂mi to g such that PM
(
g + b̂mi

)
= {m} and b̂mi (h) = bmi (h) >

b̂mi (l), then agent i’s expected payoff is as described on the RHS of (6). By the

assumption (made in the premise) that there exists no contract b̂mi such that b̂mi (h) >

b̂mi (l) > 0 and g+b̂mi �i g, it must be that gm (h)−gm (l)+bmi (h) < c. That is, it must

be that m’s incentive-compatibility constraint is not violated by adding a contract b̂mi

to g such that b̂mi (h) = bmi (h) > b̂mi (l) ≥ 0. It follows that gm (h)+bmi (h)−c < gm (l).

Therefore, g + bki �m g + bki + bmi.

We now show that the belief βm (bmi, g) is consistent with bmi. Agent i’s expected
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payoff in g + bki is

πiui (wi (H) + gi (l)− bki (l)) + (1− πi)ui (wi (L) + gi (l)− bki (l)) .

This expression is less than the LHS of (6) since bki (l) > 0 and gi (h) > gi (l). Under

g + bki + bmi agent i obtains a payoff of

πiui (wi (H) + gi (h)− bmi (h)− bki (h)) + (1− πi)ui (wi (L) + gi (h)− bmi (h)− bki (h))

if the signal is h. This expression is greater than the RHS of (6) since bki (h) < 0.

Moreover, under g + bki + bmi agent i obtains a payoff of

πiui (wi (H) + gi (l)− bki (l)− bmi (l)) + (1− πi)ui (wi (L) + gi (l))− bki (l)− bmi (l))

if the signal is l. This expression is greater than i’s payoff under g + bki as bmi (l) < 0.

Thus, in every realization of the signal, agent i’s expected payoff under g+ bmi + bki is

greater than his payoff under g + bki. Hence, m’s belief is consistent.

By the four lemmata, a necessary and sufficient condition for the weak stability of

an IC multilateral contract is that there exists no side-contract bmi such that i 6∈ M ,

m ∈M , bmi (h) ≥ 0, bmi (l) ≥ 0, and g + bmi �i g.

For the aforementioned side-contract bmi to exist, there must be an agent i 6∈ M
who is willing to pay b = max {bmi (h) , bmi (l)} to guarantee his preferred realisation

s ∈ {l, h}, and an agent m ∈M such that gm (s)−gm (s′)+ b > c. Thus, weak stability

can be written as two constraints (one for each realisation of the signal), which are given

in (7) and (8). For each i 6∈ M , denote i’s ex-ante willingness to pay to guarantee a

realisation of s ex post by zi (g, s):

maxi 6∈Mzi (g, h) +maxm∈M {gm (h)− gm (l)} ≤ c, (7)

maxi 6∈Mzi (g, l) +maxm∈M {gm (l)− gm (h)} ≤ c. (8)

Plugging CARA into zi, for each i ∈ L−M we get

zi (g, l) =
1

γ
log[

πexp[γ (gi (l)− gi (h))] + (1− π) exp[γ (wi (H)− wi (L))]

π + (1− π) exp[γ (wi (H)− wi (L))]
]

while for each i ∈ E, zi (g, l) = π (gi (l)− gi (h)). Note that zi (g, h) is symmetric.

Agent i’s willingness to pay to guarantee his preferred realisation is pinned down by

gi (h) − gi (l) (and it is monotone in gi (h) − gi (l)). It follows that for every IR, IC,
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and weakly stable contract g, there exists an IR and IC multilateral contract ĝ that

provides the same total coverage, satisfies (7) and (8), and for which, for each pair of

agents i, j ∈ I ∈ {M,L−M,E}, it holds that ĝi (h)− ĝi (l) = ĝj (h)− ĝj (l). We shall

refer to such contracts as symmetric contracts. For every symmetric contract g, denote

by Rm (g) := gm (l)− gm (h), Rk (g) := gk (l)− gk (h), and Re (g) := ge (l)− ge (h) the

coverage provided to each m ∈ M , k ∈ L−M , and e ∈ E, respectively. Without loss

of generality, we shall restrict attention to symmetric multilateral contracts.

Observe that Rm ≤ c in every IC multilateral contract. If Rm ≤ c, then (8) is

not violated by Rk = 0. Hence, every multilateral contract that maximises the total

coverage within the class of IC and weakly stable multilateral contracts must have

Rk ≥ 0.

We now show that the weak-stability constraint (8) must be binding at the opti-

mum. Inequality (8) can be written as

Rm (g) ≤ c− 1

γ
log[

πexp[γRk (g)] + (1− π) exp[γw]

π + (1− π) exp[γw]
]. (9)

If (9) is not binding, then we can add to g a multilateral contract g′ in which the

members of E provide the members of M with coverage (i.e., a contract that increases

Rm), without violating IC, IR, and (9). Since c|E| > w|L|, we can split the contract

equally between the members of E such that the second weak-stability constraint given

in (7) is not violated by this addition either. Thus, if g maximises the coverage under

the IR, IC, and weak-stability constraints, then (9) must hold with equality.

Observe that (9) is independent of α. For each α ∈ [0, 1], define Rα
m, Rα

k , and Rα
e ,

respectively, to be the values of Rm, Rk, and Re that maximise the total coverage that

can be provided in a weakly stable, IC, and IR contract given α. Ignoring (7) and

IR for a moment, finding the maximal total coverage is equivalent to maximising a

convex combination of αRm + (1− α)Rk subject to (9) (which is concave), subject to

the IC constraints that Rα
m ∈ [−c, c], and subject to the constraint that Rα

k ∈ [0, w].

This implies that Rα
m is weakly increasing in α, and that there exists an α? ∈ (0, 1)

such that Rα?

m = Rα?

k > 0 and αRα
m + (1− α)Rα

k is strictly increasing (respectively,

decreasing) in α for α > α? (respectively, α < α?).

As long as Rα
m ≥ 0, the IR constraints hold as the risk-neutral reinsurers provide

coverage to the risk-averse insurers. Moreover, the second weak-stability constraint in

(7) holds when Rα
m ≥ 0 since it is possible to split the coverage such that Rα

e > −c and

the external reinsurers are unwilling to pay more than c to guarantee the signal h ex

post. Thus, the total coverage is increasing in α in [α?, 1]. It is left to show that the
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total coverage is decreasing in α when α < α?.

For α < α?, it holds that Rα
m < Rα

k . Let us consider two values of α: α′ < α′′ < α?

and show that α′Rα′
m + (1− α′)Rα′

k > α′′Rα′′
m + (1− α′′)Rα′′

k . Consider an IR, IC, and

weakly stable contract g that provides coverage of Rα′′
m and Rα′′

k when α = α′′. Let us

decrease the share of manipulators from α′′ to α′. Denote by M1 the set of agents who

are nonmanipulators under α′ and manipulators under α′′. We can add to g the contract

g′ in which the members of E provide more coverage to the members of M1 such that

gi (l) − gi (h) + g′i (l) − g′i (h) = Rα′′

k > Rα′′
m . As the risk-neutral reinsurers provide

coverage to the risk-averse insurers, g′ can be set such that g + g′ does not violate the

IR constraints. The weak-stability constraints in (9) and (7) are not violated by this

change either as Re ≥ −c after the change, and the coverage provided to manipulators

and nonmanipulators remains as before. Let T be the total coverage in g+ g′ after the

change and observe that α′Rα′
m + (1− α′)Rα′

k ≥ T . Since Rα′′

k > Rα′′
m , it follows that

T > α′′Rα′′
m + (1− α′′)Rα′′

k .

Proof of Proposition 7

By the incentive-compatibility property, gm (h) − gm (l) ∈ [−c, c] for every m ∈ M .

Consider an arbitrary agent i 6∈M and assume that gi (h) > gi (l). Ex ante, agent i is

willing to pay (gi (h)− gi (l)) (1− πi) to guarantee that, ex post, the realisation will be

h. We now show that if g is IC and (gi (h)− gi (l)) (1− πi) > 2c, then g is not weakly

stable.

Consider a side-contract bmi such that bmi (h) = 2c + 2ε > bmi (l) = ε > 0. As g is

IC, PM (g + bij) = {m}. Since gm (h) − gm (l) + bmi (h) − bmi (l) > c, by Assumption

1, the signal h results from g + bmi in both states. Thus, if ε > 0 is sufficiently small,

g + bmi �i g. Since m receives a positive transfer in both realisations and g is IC, it

must be that g + bmi �m g.

We now show that there exists no consistent belief βm (bmi, g) that blocks bmi.

Clearly, if g + βm (bmi, g) is IC, then g + βm (bmi, g) + bmi �m g + βm (bmi, g). Suppose

that g+βm (bmi, g) is not IC. Then , since i 6∈M and g is IC, |PM (g + βm (bmi, g)) | = 1.

By Assumption 1, either g + βm (bmi, g) results in l in both states or it results in h in

both states. If g + βm (bmi, g) results in l in both states, then m is better off signing

bmi as it guarantees him a transfer greater than gm (l). If g + βm (bmi, g) results in

h in both states, then, by Assumption 2, g + βm (bmi, g) + bmi results in h in both

states such that bmi is a transfer from i to m that does not affect the signal. This is

in contradiction to the consistency of βm (bmi, g). In conclusion, if g is IC and weakly
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stable, then (gi (h)− gi (l)) (1− πi) ≤ 2c for every i ∈ I −M . A symmetric argument

shows that gi (l)− gi (h) is bounded from above for every i ∈ I −M .

Proof of Proposition 8

First, we need to determine which deviations can undermine the weak stability of a

multilateral contract, and which deviations cannot do so. Lemmata 6–9 show that,

as in the proof of Proposition 6, the deviations that we need to look for consist of a

side-contract between an agent i 6∈ M and an agent m ∈ M . In these side-contracts,

agent i pays agent m in order to incentivise the latter to manipulate the signal to i’s

preferred realisation ex post, if necessary.

The analysis in this part of the proof is similar to that in the proof of Proposition 6

and we shall refer the reader to the proof of Proposition 6 whenever there is redundancy.

Lemma 6 Let g be IC and IR and let i, j ∈ I −M . For each side-contract bij such

that g + bij �i g, there exists a consistent belief βj (bij, g) such that g + βj (bij, g) �j
g + βj (bij, g) + bij.

Proof. See the proof of Lemma 2.

Lemma 7 Let g be an IC and IR contract that satisfies Condition 1. Let m,m′ ∈M .

For each side-contract bmm′ such that g + bmm′ �m′ g, there exists a consistent belief

βm (bmm′ , g) such that g + βm (bmm′ , g) �m g + βm (bmm′ , g) + bmm′.

Proof. There are four possible cases:

1. |gm (h)−gm (l)+bmm′ (h)−bmm′ (l) | > c ≥ |gm′ (h)−gm′ (l)−bmm′ (h)+bmm′ (l) |,

2. |gm′ (h)−gm′ (l)−bmm′ (h)+bmm′ (l) | > c ≥ |gm (h)−gm (l)+bmm′ (h)−bmm′ (l) |,

3. |gm (h)− gm (l) + bmm′ (h)− bmm′ (l) |, |gm′ (h)− gm′ (l)− bmm′ (h) + bmm′ (l) | ≤ c,

4. |gm (h)− gm (l) + bmm′ (h)− bmm′ (l) |, |gm′ (h)− gm′ (l)− bmm′ (h) + bmm′ (l) | > c.

Case 1: Only m’s incentive-compatibility constraint is violated under g + bmm′ .

First, observe that if sign (gm (h)− gm (l)) 6= sign (gm′ (h)− gm′ (l)) and only m’s

incentive-compatibility constraint is violated, then it cannot be that both g 6�m g+bmm′

and g+bmm′ �m′ g. Hence, in this case g �m g+bmm′ such that a belief βm (bmm′ , g) = ∅
is consistent and blocks bmm′ .

Second, assume that sign (gm (h)− gm (l)) = sign (gm′ (h)− gm′ (l)). By Condition

1, the side-contract is signed between an agent m ∈ I l ∩M and an agent m′ ∈ I l ∩M
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or between an agent m ∈ Ih ∩M and an agent m′ ∈ Ih ∩M . If we plug risk-neutral

preferences into (1), (2), and (3) instead of CARA preferences in Case 1 of Lemma

3, then we obtain that a side-contract between an agent m ∈ I l ∩M and an agent

m′ ∈ I l ∩M such that only agent m’s incentive-compatibility constraint is violated

cannot destabilise a multilateral contract. Analogously, a side-contract between an

agent m ∈ Ih∩M and an agent m′ ∈ Ih∩M such that only m’s incentive-compatibility

constraint is violated cannot destabilise a multilateral contract.

Case 2: Only m′’s incentive-compatibility constraint is violated in g + bmm′ . The

proof is identical to that of Case 2 in Lemma 3.

Case 3: The contract g + bmm′ is IC. The proof is identical to that of Case 3 in

Lemma 3.

Case 4: Both agents’ incentive-compatibility constraints are violated under g +

bmm′ . The proof is identical to that of Case 4 in Lemma 3.

Lemma 8 Let g be IC and IR and let i ∈ I −M,m ∈ M . For each side-contract bmi

such that g + bmi �i g, bmi (h) > 0, and bmi (l) > 0, there exists no consistent belief

βm (bmi, g) such that g + βm (bmi, g) �m g + βm (bmi, g) + bmi.

Proof. The proof of this lemma is identical to the proof of Lemma 4.

Lemma 9 Let g be IC and IR, let i ∈ I−M,m ∈M , and suppose that there exists no

side-contract bmi such that g+ bmi �i g, bmi (h) > 0, and bmi (l) > 0. For each contract

bmi such that g + bmi �i g and g + bmi �m g, there exist consistent beliefs βi (bmi, g)

and βi (bmi, g) such that g + βi (bmi, g) �i g + βi (bmi, g) + bmi and g + βm (bmi, g) �m
g + βm (bmi, g) + bmi.

Proof. The proof is identical to the proof of Lemma 5.

By Lemmata 6–9, to verify the weak stability of an IC multilateral contract g that

satisfies Condition 1, we only need to check whether there exists a contract bmi such that

i 6∈M , m ∈M , bmi (h) ≥ 0, bmi (l) ≥ 0, and g+ bmi �i g. For such a contract to exist,

there must be an agent i 6∈M who is willing to pay b = max {bmi (h) , bmi (l)} to guaran-

tee his preferred signal s ∈ {l, h}, and an agent m ∈M such that gm (s)−gm (s′)+b > c.

Condition 1 allows us to translate this to two “weak-stability constraints,” one for the

members of Ih and the other for the members of I l:

maxi∈Ih−M (gi (h)− gi (l)) (1− πh) ≤ c−maxm∈M∩Ih (gm (h)− gm (l)) , (10)

maxi∈Il−M (gi (l)− gi (h))πl ≤ c−maxm∈M∩Il (gm (l)− gm (h)) . (11)
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The LHS of (10) (respectively, (11)) is the maximal willingness of any agent i ∈ Ih−M
(respectively, i ∈ I l−M) to pay ex ante to guarantee that ex post the signal’s realisation

will be s = h (respectively, s = l).

In addition to weak stability, the multilateral contract has to be IC and IR. The

multilateral contract’s incentive compatibility is implied by the combination of Condi-

tion 1 and the constraints in (10) and (11). Observe that the total surplus is∑
i∈I

πigi (h) + (1− πi) gi (l) =
∑
i∈I

πi (gi (h)− gi (l)) . (12)

Condition 1 implies that (12) is positive. Hence, even if g is not IR, there exists another

IR contract g′ such that gi (h) − gi (l) = g′i (h) − g′i (l) for each i ∈ I. In conclusion,

when we look for the maximal volume of speculative trade that is induced by an IC,

IR, and weakly stable contract that satisfies Condition 1, we can restrict our attention

to multilateral contracts that satisfy Condition 1, (10), and (11).

Let us consider constraint (10) and the members of Ih. Each i ∈ Ih − M can

hold a position of gi (h) − gi (l) ≤ minm∈Ih∩M
c−(gm(h)−gm(l))

1−πh
. Each m ∈ Ih ∩M can

hold a position of gm (h) − gm (l) ≤ mini∈Ih−Mc − (1− πh) (gi (h)− gi (l)). Thus, the

maximal volume of speculative trade subject to (10) is obtained by a contract g in

which each m ∈ Ih ∩ M holds a position of gm (h) − gm (l) = c or by a contract

g′ in which each i ∈ Ih − M holds a position of g′i (h) − g′i (l) = c
1−πh

. Hence, the

maximal volume of speculative trade subject to (10) is n ∗max
{
αc, (1− α) c

1−πh

}
. A

symmetric analysis shows that the maximal volume of speculative trade subject to (11)

is n ∗max
{
αc, (1− α) c

πl

}
. Since the two groups of agents bet against each other, the

maximal volume of speculative trade is the minimum of the two expressions.

Appendix B: The Maximal Aggregate Coverage in Section 4.1

First, let us plug the weak-stability constraint given in (9) into our objective function,

αRm + (1− α)Rk, to obtain (13):

α

(
c− 1

γ
log[

πexp[γRk] + (1− π) exp[γw]

π + (1− π) exp[γw]
]

)
+ (1− α)Rk. (13)

We now maximise (13) under the IR and IC constraints, the additional weak-stability

constraint given in (7), and the restriction to Rk ≤ w. Note that if Rm ∈ [0, c]

and Rk ∈ [0, w] in some contract g that is not IR, then we can always find another

contract g′ that is both IR and satisfies the weak-stability constraint (7), and provides
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a coverage of Rm and Rk. Hence, in an internal solution, IR is satisfied. Moreover, in

such a solution, IC is implied by the weak-stability constraint given in (9). From the

first-order condition we obtain that in an internal solution,

Rk = w − 1

γ
log[

π (2α− 1)

(1− π) (1− α)
]. (14)

The coverage Rk is decreasing in π since the willingness to pay to guarantee that the

signal is l of each k ∈ L −M is increasing in the probability that state H is realised.

This follows from the fact that k ∈ L − M benefits from manipulation only when

state H is realised. Let us focus on the share of manipulators α. Intuitively, since we

maximise a convex combination of Rk and Rm, it follows that when α is increasing, Rk

is decreasing and Rm is increasing.

In an internal solution,

Rm =

c− 1

γ
log[

πexp[γ
(
w − 1

γ
log[ π(2α−1)

(1−π)(1−α) ]
)

] + (1− π) exp[γw]

π + (1− π) exp[γw]
]

 . (15)

Hence the maximal coverage per insurer that can be obtained in an IR, IC, and weakly

stable contract is

α

(
c− 1

γ
log[

πexp[γ (w −∆)] + (1− π) exp[γw]

π + (1− π) exp[γw]
]

)
+ (1− α) (w −∆)], (16)

where ∆ := 1
γ
log[ π(2α−1)

(1−π)(1−α) ]. To verify that the solution is indeed internal we must

verify that two conditions hold. First, it must be that Rk ∈ [0, w]. Observe that this

condition is satisfied for α ∈ [ 1
1+π

, π+(1−π)exp[γw]
2π+(1−π)exp[γw] ]. The second condition needed for an

internal solution is that if Rm ∈ (−c, 0) (that is, if the members of M “have skin in

the game”), then both IR and the second weak-stability constraint, explicitly given in

(17), hold:

c+Rm ≥ − (1− π)Re. (17)

Let us consider the following parameters: w = 10, γ = 0.5, π = 0.9, and c = 8. For

α ∈ [0.526, 0.945] we obtain an internal solution for Rk. For α < 0.526 (α > 0.945),

Rk = 10 (Rk = 0) and Rm = 3.512 (Rm = 8). For α = 0.75, the maximal average

level of coverage is 6.534, which reflects a loss of 23.13 percent when compared to

the constrained-efficient level of coverage, which is 8.5. If we increase the agents’ risk

aversion to γ = 1, we have an internal solution to Rk for α ∈ [0.526, 0.999]. For
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α < 0.526 (α > 0.999), we have Rk = 10 (Rk = 0) and Rm = 5.697 (Rm = 8).
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