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1 Introduction

The rise of online matching platforms has revolutionized matching markets by facilitating

matching in a wide array of contexts ranging from dating and labor to commerce and

tourism.1 Compared to traditional forms of match-making, online matching platforms are

better able to mitigate both search frictions by creating thick markets and information

frictions by effectively utilizing big data to identify promising matches.

While online platforms have the ability to harness new technologies for the benefit

of their users, it is important to remember that their primary objective remains profit

maximization. This objective gives rise to a potential misalignment of interests: users

join the platform to find a good match, but a good match may reduce their future usage,

thereby decreasing the platform’s profit. For example, the popular dating app Hinge

claims that it uses its technology to provide such high-quality matches that it is “designed

to be deleted.” On the other hand, in February 2024 a federal lawsuit2 filed against Match

Group (which includes the popular dating apps Tinder and Hinge) claimed that Match’s

services “prioritize profits over customers’ relationship goals” by “[h]arnessing powerful

technologies and hidden algorithms” to “capture and sustain paying subscribers and keep

them on-app.”

At a glance, it may seem that a platform has an incentive to provide its users with

“bad matches” in order to prevent them from leaving the platform permanently after

finding a good match. However, providing bad matches reduces users’ willingness to pay

the platform for its services. In other words, the platform faces a tradeoff: providing a

service that is “too good” can reduce its clientele base, whereas providing a service that

is not good enough can reduce the fees it can charge from each user. This tradeoff affects

the type of technologies that dating platforms adopt and the extent of their adoption.

In this paper, we develop a model of a platform-mediated matching market that allows

us to explore the platform’s incentives to adopt new matching technologies. We then

explore how technology adoption shapes users’ behavior and affects their overall welfare,

taking the platform’s (endogenous) pricing strategy into account. For concreteness, we

present the model and the results through the lens of a specific application, namely, dating

apps and the marriage market. In the concluding section we discuss why our analysis and

1For instance, since the turn of the 21st century, meeting online has gradually displaced the roles that
family and friends once played in bringing couples together, becoming the most popular way couples
meet (Rosenfeld, Thomas and Hausen, 2019).

2Oksayan v. MatchGroup Inc., N.D. Cal., No. 3:24-cv-00888, 2/14/24.
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insights apply in other contexts such as the labor market.3

In the model, there is a two-sided market that is controlled by a monopolistic profit-

maximizing platform. Agents on both sides of the market join the platform in order to

search for a partner. While they are on the platform, agents meet potential partners at

random. A key aspect of the model is that when two agents meet, they do not know their

exact fit. Their fit is revealed gradually as they spend time together off the platform. As

agents gather more information about their fit, they can choose to stay with their partner

or break up with them and return to the platform in order to find a more promising

partner. This decision depends not only on their belief regarding their fit with the current

partner, but also on their beliefs regarding (i) how long it will take them to find a new

partner, (ii) how likely it is that they will find a new partner who is more suitable for

them (i.e., a partner with whom they have a better fit), and (iii) how much it will cost

to rejoin the platform.

The platform in our model is characterized by its technology, which consists of two

components. The first component represents the platform’s ability to screen relevant

partners for its users. Agents in our model meet only potential partners with whom their

fit is better than some threshold level θ0. The second component represents the speed of

search on the platform. While they are on the platform, agents meet relevant partners at

a constant rate µ.4

In exchange for these services, the platform chooses a fee that agents have to pay in

order to join the platform. The central tradeoff that the platform faces in setting its fee

is as follows. On the one hand, a higher fee increases the payment collected from any user

who chooses to return to the platform. On the other hand, a higher fee makes returning

to the platform less attractive, which means that some users may decide to stay with

their current partner rather than terminate their match and search for a more promising

one. This, in turn, reduces the platform’s repeat clientele base.

To investigate the platform’s incentives to adopt new technologies, we first study the

implications of improvements in the platform’s technology on its profits, taking into ac-

count that it readjusts its pricing strategy. We show that a higher speed of search increases

the platform’s profits, whereas better screening reduces its profits. Roughly speaking, the

difference between the effects of these two technological improvements arises due to their

opposite effects on the size of the platform’s repeat clientele base. An improvement in

3We conduct a formal analysis of this case in Online Appendix C.
4In Online Appendix B, we show that all of our results hold when the search technology is quadratic.

3



the speed of search makes returning to the platform more attractive for agents and, as a

result, makes them break up with partners that they would stay with otherwise. Thus,

such an improvement enlarges the repeat clientele base. An improvement in the level of

screening also makes returning to the platform more attractive, but has an additional

effect: it improves the quality of the matches proposed by the platform. We show that

the latter effect dominates the former one, and so, overall, agents are less likely to break

up with partners they meet on the platform. Thus, such an improvement shrinks the

platform’s repeat clientele base.

We then turn to consider the users’ perspective. The platform’s technology affects the

optimal fee that it charges. We show that, under mild parametric assumptions, both types

of technological advances (i.e., higher speed of search and/or better screening technology)

reduce the platform’s optimal fee. This prediction stands in contrast to the basic intuition

that higher-quality products are associated with higher prices, and is intrinsically related

to the repeat clientele tradeoff underlying the platform’s profit maximization problem.

This result suggests that the initial increase in consumer surplus due to technological

advances is amplified by the platform’s response in pricing.

Combining the above results, we can conclude that a higher speed of search leads to

a Pareto improvement, but that there is a tension between the platform’s profits and

consumer surplus when it comes to better match screening: despite the positive effect

on consumer welfare, better screening is not desirable from the platform’s perspective.

These results imply that when the platform is faced with the decision on how much to

invest in each component of its technology, it has an incentive to invest in reducing search

frictions and a disincentive to invest in improving its screening ability (these investment

decisions are not modeled explicitly because, as the analysis shows, the platform’s in-

vestment incentives can be understood without endogenizing the platform’s investment

decisions, which would require specifying the costs of such investments). This in turn

suggests that users of online matching platforms should expect to meet a large number of

potential partners, but not necessarily ones who are likely to be suitable for them. This

prediction reflects the tension between profits and customer goals underlying the lawsuit

against Match Group mentioned above.

We contribute to the matching-with-frictions literature in two dimensions. First, we

propose a model with horizontal differentiation (and learning about match quality) that

can be solved in closed form and that enables the derivation of comparative statics, which

are typically difficult to obtain in such models (see Chade, Eeckhout and Smith, 2017, for a
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comprehensive review). Second, we introduce a matchmaking platform into the matching-

with-frictions setting. While we are not the first to consider matchmaking in this context

(as we discuss in the literature review, Bloch and Ryder, 2000, introduce a matchmaker

into this setting as well), we are the first to study this matchmaker’s incentives and the

way they shape the matching market’s outcomes. At the methodological level, we also

contribute to the literature on platform design by introducing agents’ search and learning

incentives and considering a dynamic model that features repeat clientele.

The paper proceeds as follows. Section 2 presents the model. In Section 3, we charac-

terize the equilibrium in closed form. In Section 4, we use this characterization to study

the implications of technological advances on prices, profits, and welfare. In Section 5

we discuss the related literature, and in Section 6 we discuss extensions to the baseline

model. Online Appendices B and C formally analyze two alternative specifications of the

model.

2 The Model

We study an environment in which a monopolistic platform facilitates matching between

two sets of agents. We assume that the two sets are symmetric.5 The market operates in

continuous time, and agents discount the future at a rate of r > 0. New agents enter the

platform at a constant rate of 2η > 0, with the inflow equally distributed between both

sides of the market.

Agents are horizontally differentiated, that is, each agent has their own idiosyncratic

preferences over potential partners. To impose some structure on the model, we borrow

Salop’s (1979) model of horizontal differentiation and assume that, on each side of the

market, agents’ tastes are uniformly distributed on a circle. We identify each agent by

their (clockwise) distance from the top of the circle, and denote this characteristic by x.

The length of the arc between two agents determines the fit of their match: the shorter

the arc, the better the fit. Agents do not observe their fit upon meeting one another.

Search-and-matching technology. Based on its information, the platform can partially

predict the fit of potential matches. In particular, for any couple ⟨x, y⟩, the platform can

identify whether α(x, y) ≤ θ0, where α(x, y) denotes the length of the arc between x and

y. The platform then screens potential partners for its users by directing agents’ search to

5In the concluding section, we explain why our model can also accommodate certain types of asym-
metry between the two sides.
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those potential partners with whom they have a (sufficiently) good fit, that is, for which

α(x, y) ≤ θ0. We refer to θ0 as the level of screening provided by the platform; note that

a lower value of θ0 is associated with better screening.

Search on the platform is time-consuming. Each agent on the platform randomly

meets partners with whom they have a good fit at a constant rate of µ. Since the fit of a

match is unobservable, all proposed matches are ex-ante symmetric. Hence, agents either

reject all matches or leave the platform with their first proposed match (who also leaves

the platform), Assumption (2) below rules out the former degenerate case.

Remark: In Online Appendix B, we analyze the model under an assumption that the

search technology is quadratic (as in , e.g., Shimer and Smith, 2000; Smith, 2006). The

key difference between the two search technologies is that under quadratic search the rate

at which an agent meets potential partners is endogenous. Nevertheless, we show that all

of our results remain valid under the alternative search technology.

Payoffs and learning. Utility in our model is nontransferable and the flow payoff to

unmatched agents is normalized to zero.6 We consider a setting where the flow payoff that

agents receive while they are together is increasing in both their fit and the amount of

time in which they have been together. Such payoff processes capture a natural idea: the

better one knows their partner, the greater the benefit one derives from the relationship.

For instance, a couple’s mutual trust may increase over time (which results in a greater

payoff) or they may benefit from exploring new joint activities and “fine-tuning” their

relationship. However, the extent to which a relationship can be fine-tuned is bounded

by the fit of the couple.

In our model, agents must infer the fit of a match based on their flow payoffs. This

dynamic inference problem presents a modeling challenge due to the infinite state space.

We introduce a payoff structure that enables closed-form updating rules while capturing

the natural feature mentioned above. Specifically, we assume that the flow payoff to an

agent in a couple with fit α that have been together for τ units of time is

u(α, τ) = 1− β ·max{α, θτ},

where θt evolves according to
dθt
θt

= −λdt. (1)

6We explain why our results continue to hold under transferable utility in Online Appendix C.
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The parameter λ > 0 represents the rate at which a couple’s payoff increases over time,

while the parameter β > 0 measures the importance of fit. Throughout the paper we

impose the qualitative assumption that agents prefer any (proposed) match to remaining

unmatched;7 that is, we assume that

βθ0 < 1. (2)

The agents’ flow payoffs are informative about their fit. If a couple has been together

for τ units of time and their flow payoff has increased during all their time together, they

will infer that α ≤ θτ . On the other hand, if their flow payoff became constant at σ < τ ,

they will infer that α = θσ. Figure 1 depicts the dynamics of learning for a couple whose

tastes are represented by the blue and red dots. Upon being matched, the agents infer

that their fit is at least θ0; after being together for 1 unit of time they infer that their fit

is at least θ1; and after spending 2 units of time together they learn their fit.

θ2

θ1

θ0

Figure 1: Learning technology.

Strategies. The platform’s objective is to maximize its profit. Its strategy specifies a

fee, ϕ ≥ 0, which agents pay every time they join the platform.8,9 We impose a technical

assumption that newly arriving agents do not need to pay the fee (i.e., “the first sample

is free”). This assumption guarantees that the platform’s optimal fee corresponds to the

7This assumption is standard in the matching-with-search-frictions literature. See, e.g., Burdett and
Coles (1997), Shimer and Smith (2000), and Smith (2006).

8In reality, fees may be periodic rather than per match (e.g., a monthly fee). Such a pricing method
is outcome equivalent to the one in our model (see Section 6 for an explanation).

9Monthly subscription fees can range from small amounts such as $7.99 to larger amounts such as
$500 (e.g., Tinder Platinum).
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solution of a first-order condition, and is commonly used in the consumer search literature

in order to overcome the Diamond paradox (for a discussion, see, e.g., Burdett and Judd,

1983).

Each agent’s strategy specifies two things: under what conditions to unilaterally ter-

minate an existing match, and, after a match has been terminated, whether or not to

pay the platform’s fee and return to the platform. As in many other two-sided matching

models, the agents’ ability to unilaterally terminate a match can sustain a plethora of

equilibria in which agents choose to separate from their partner on the basis of a belief

that the partner will choose to separate from them. To abstract away from equilibria that

arise from such a lack of coordination, the matching-with-search-frictions literature (e.g.,

Burdett and Coles, 1997; Smith, 2006) typically assumes that agents accept any match

that exceeds their reservation value; that is, agents decide which matches to accept as if

their choice were pivotal. In this paper, we make the analogous assumption that agents’

termination choices are made as if they were pivotal.

We focus on strategies that are symmetric across agents and stationary. Agents in our

model are ex-ante symmetric. If they use symmetric strategies, then the distribution of

agents that are active on the platform remains uniform at all points in time. This has

two key implications. First, agents are also interim symmetric, which justifies their use

of symmetric strategies throughout the dynamic interaction. Second, a couple that has

been together for τ units of time without learning their fit believes that it is distributed

uniformly on [0, θt].
10

Threshold strategies. A couple’s continuation payoff from a match (strictly) increases

over time until their fit is revealed. By contrast, the value of joining the platform does not

change over time. It follows that the continuation value of staying in a match of unknown

fit, relative to the value of terminating the match and returning to the platform, increases

over time until the couple’s fit is revealed. Therefore, the only time at which agents

may find it optimal to terminate a match is when its fit is revealed. Furthermore, if

agent x prefers staying in a match with agent y to terminating the match (when its fit is

revealed), agent x would prefer to stay with every agent y′ such that α(x, y′) < α(x, y).

The following lemma is implied:

Lemma 1 (Threshold Strategies) Agents’ optimal strategies can be represented by a

separation threshold αs ∈ [0, θ0] such that

10Focusing on such strategies is common in the matching-with-frictions literature; see Smith (2006) for
a discussion.
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1. Agents remain together until they learn their fit.

2. Upon learning their fit, they terminate the match if α(x, y) > αs, and remain to-

gether indefinitely if α(x, y) ≤ αs.

Figure 2 depicts how the strategy of an agent located at the top of the circle determines

the outcome of matches with various partners: a match with a partner on the arc of the

“Successful” region leads to an indefinite relationship, whereas a match with a partner

on the arc of the “Unsuccessful” regions leads to eventual separation and a return to the

platform. There are no meetings with potential partners on the arc of the “Not Matched”

region.

2θ0

2αs

Success-
ful

Un-
successful

Un-
successful

Not Matched

Figure 2: Strategies and outcomes.

Equilibrium. Agents’ optimal separation choices depend on the value of rejoining the

platform. Given the linearity of the matching technology and the fact that agents use

stationary symmetric strategies, this value depends only on the platform’s technology and

fee. That is, on ⟨µ, θ0, ϕ⟩. We say that the agents’ strategy, αs, constitutes a continuation

equilibrium if it maximizes the agents’ expected discounted payoff given ⟨µ, θ0, ϕ⟩.11 We

say that ⟨ϕ, αs⟩ is an equilibrium if ϕ maximizes the platform’s profit from each agent

given αs, and αs is a continuation equilibrium.

11Assumption (2) implies that if agents optimally terminate a match, they will rejoin the platform.
Hence, agents’ optimal strategies can be described only by αs.
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3 Equilibrium

In this section, we characterize the equilibrium of the model. Since the model is sequential

in nature, we start with the agents’ behavior in the second stage, namely, their behavior

given any fixed fee set by the platform. We show that there exists a unique continuation

equilibrium and characterize it in closed form. We then turn to the platform’s pricing

problem in the first stage, and show that it also has a unique solution.

3.1 Agent’s behavior on the platform

We start by analyzing the agents’ behavior given a fixed fee. The (continuation) equi-

librium can be either a nontrivial equilibrium in which agents terminate matches and

rejoin the platform with positive probability, or a trivial equilibrium in which agents stay

indefinitely with the first partner with whom they are matched.

The continuation value of an indefinite relationship for a couple ⟨x, y⟩ who have learned
that their fit is α(x, y) is

1− βα(x, y)

r
.

Denote by Ws the (endogenous) continuation value for an agent that is on the platform.

In a nontrivial equilibrium the continuation value after terminating a match is Ws − ϕ.

The equilibrium separation threshold αs is the fit α for which the agents are indifferent

whether to stay together or terminate their match and rejoin the platform. Thus, in a

nontrivial equilibrium, it must be that

1− βαs

r
= Ws − ϕ.

Lemma 2 (Equilibrium strategies) In a nontrivial equilibrium, strategies are charac-

terized by a separation threshold αs such that

αs =
1− r(Ws − ϕ)

β
, (3)

and αs ∈ (0, θ0).

To characterize the agents’ equilibrium behavior, we connect Ws to the separation

threshold derived in Lemma 2 using a recursive representation of Ws. In a nontrivial

equilibrium, each match either lasts indefinitely or leads to an eventual separation and
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return to the platform. We refer to the former type of match as a successful match and

to the latter type of match as an unsuccessful match. A match between agents x and y

is successful if α(x, y) ≤ αs and is unsuccessful otherwise. Denote the probability that a

match is successful by Pr(succ).

For i ∈ {s, n}, where s represents a successful match and n represents an unsuccessful

one, let EVi denote the expected payoff while a couple remain together. Note that EVs

is the continuation value after a successful match, whereas EVn includes the payoff ob-

tained while a couple remain together net of the cost of joining the platform, ϕ, but does

not include the payoffs obtained from future relationships. Let σ denote the expected

discounting between the beginning and end of an unsuccessful match.

The continuation value for an agent that is on the platform can be written recursively

as

Ws =
µ

µ+ r
((1− PS) (EVn + σWs) + PSEVs) , (4)

where µ
µ+r

is the expected discounting until the agent is matched for the first time, and

PS is the probability that a match is successful. Using this representation, we establish

that there exists a unique continuation equilibrium and derive a critical level ϕ such that

this equilibrium is nontrivial if and only if ϕ < ϕ. This critical level equates the agent’s

expected utility from paying the fee to search (once) for a new partner and the utility

from remaining in a match with the worst possible fit. Let ξ ≡ r
λ
.

Proposition 1 For any given ϕ there exists a unique continuation equilibrium. This

continuation equilibrium is nontrivial if and only if

ϕ <
θ0β(1 + µ (λξ(ξ + 2))−1)− 1

λξ + µ
≡ ϕ. (5)

The nontrivial continuation equilibrium (when it exists) is characterized by

ξ2 + 2ξ

θ0
(λξ + λ + µ)αs +

µ

θξ+2
0

αξ+2
s = µξ(ξ + 1) +

ξ(ξ + 2)(λ(ξ + 1)(λξϕ+ µϕ+ 1))

θ0β
.

(6)

3.2 The Platform’s Pricing Decisions

We now study the platform’s pricing problem, namely, maximizing the expected profit

from each newly arriving agent, taking the agents’ equilibrium behavior into account.
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The platform’s pricing problem is nondegenerate if there exists a strictly positive fee that

induces a nontrivial continuation equilibrium. Such a fee exists if and only if ϕ (see

Equation (5)) is strictly positive, which occurs when

θ0βµ > rλ2(1− θ0β)(λr + 2). (7)

Note that this condition holds when agents are sufficiently patient. In what follows, we

assume that (7) holds.

By Proposition 1, if ϕ > ϕ then agents prefer staying in the worst possible match to

returning to the platform and paying its fee. Importantly, for such fees the platform’s

profit would be zero. Hence, without loss of generality, we can restrict the platform’s

choice of fee to the closed interval [0, ϕ]. Finally, to ease the exposition, we also assume

that the platform does not discount future payoffs.

The Platform’s Pricing Problem

In order to analyze the platform’s pricing problem, we first derive its profit function. The

platform generates profits from the fees paid by agents who find themselves in an unsuc-

cessful match and choose to return to the platform.12 Thus, the platform’s profit depends

on the size of its repeat clientele base. This size, in turn, depends on the conversion

rate, which is the probability that a match is successful. Note that the conversion rate is

endogenous and affected by the platform’s technology and pricing decisions.

Formally, we denote the conversion rate by γ and define it as

γ ≡ Pr(α < αs | α ≤ θ0). (8)

On average, an agent has 1
γ
partners, and so the platform’s repeat clientele base (relative

to the inflow of new users) is ( 1
γ
−1). It follows that the expected profit that the platform

makes from a given agent is ( 1
γ
− 1)ϕ. Let αs(ϕ) denote the solution to (6) as a function

of ϕ, and let γ(ϕ) denote the induced conversion rate of matches. As there is a unique

continuation equilibrium strategy for any fixed ϕ (Proposition 1), these functions are well

defined. The platform’s objective is thus

max
ϕ∈[0,ϕ]

(
1

γ(ϕ)
− 1)ϕ. (9)

12In Section 6 we consider the possibility that the platform obtains additional revenue from advertising.
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Proposition 2 The platform’s pricing problem has a unique solution. It is given by

1

γ(ϕ)
− 1 = ϕ

γ′(ϕ)

γ2(ϕ)
. (10)

This optimality condition captures the central tradeoff that arises in a dynamic setting

where the platform’s pricing decisions determine the probability with which agents return

to the platform. On the one hand, a marginal increase in ϕ increases the fee that the

platform collects from each agent. Since, on average, an agent pays the fee 1
γ(ϕ)

− 1 times,

this direct effect is captured by the LHS of Equation (10). On the other hand, an increase

in ϕ makes joining the platform less attractive and thereby increases the conversion rate

γ(ϕ). Thus, an increase in ϕ decreases the average number of times that an agent pays

the fee by

− d

dϕ

1

γ(ϕ)
=

γ′(ϕ)

γ2(ϕ)
.

As each additional round of search yields the platform a profit of ϕ, this indirect cost of

increasing ϕ is captured by the RHS of Equation (10).

4 Main Results: Technology, Prices, and Profits

4.1 The Users’ Response to Changes in Matching Technology

In this subsection, we use the closed-form characterization of the continuation equilibrium

in order to derive comparative statics about the agents’ behavior. Such comparative

statics are not only of interest in their own right, but also play a key role in the sequel

when we study how the platform’s profits and pricing change with its technology.

Recall that the agents’ separation threshold equates the value of remaining with a

marginally acceptable partner, 1−αsβ
r

, to the value of terminating the match and returning

to the platform,Ws−ϕ. Thus, improvements in the platform’s technology that increaseWs

– whether through an increase in µ or a reduction in θ0 – increase an agent’s incentive to

terminate a match and return to the platform. Similarly, a reduction in the platform’s fee

also increases agents’ incentives to return to the platform and search for better matches.

Formally, we have the following result.

Proposition 3 Assume that (5) holds. The separation threshold αs is increasing in ϕ

and θ0, and decreasing in µ.

13



The separation threshold is a measure of equilibrium sorting: a lower αs means that

there is better sorting in the sense that agents who remain together indefinitely have a

better fit. Thus, Proposition 3 implies that better technology enhances sorting, whereas

a higher fee impairs sorting.

Corollary 1 Equilibrium sorting improves due to technological improvements or a reduc-

tion in the platform’s fee.

4.2 The Effect of Technological Changes on Profits and Pricing

We start by exploring the implications of technological advances on the platform’s profits

(and consequently its incentives to invest in such advances).

Proposition 4 Faster search (a higher µ) increases the platform’s profits, whereas better

screening (a lower θ0) reduces its profits.

Since the platform is a monopoly, basic economic reasoning suggests that it should

benefit from an improvement in the quality of the services it provides. Proposition 4,

however, establishes that technological improvements can actually reduce the platform’s

profits (although it can readjust its pricing strategy).

To grasp the intuition for this result, recall that the platform’s profits depend on the

size of its repeat clientele base: an increase (resp., decrease) in the size of the repeat client

base shifts up (resp., down) the entire profit function. The platform’s repeat clientele base

is inversely related to the conversion rate. Recall that a higher speed of search makes

agents more picky (Proposition 3), but has no effect on the fit of proposed matches.

Thus, faster search results in a lower conversion rate and a larger repeat clientele base.

On the other hand, improvements in the level of screening directly improve the fit of

proposed matches and indirectly make agents more picky. The proposition shows that

the direct effect is the one that dominates, and so better screening leads to an increase

in the conversion rate and a smaller repeat clientele base. We can conclude that different

types of technological improvements have opposite effects on the platform’s profits due to

their opposite effects on the size of its repeat clientele base.

Proposition 4 has clear implications for the platform’s incentive to invest in its tech-

nology. To see this, consider a richer setting in which the platform can invest in improving

its technology. Proposition 4 suggests that, regardless of the specific details concerning
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the cost and feasibility of such technological investments, the platform has neither an

incentive to obtain information about its users, nor an incentive to use all of the informa-

tion it does have to provide better screening (above the minimal level needed to induce

a non-trivial equilibrium). On the other hand, if the cost of investing in reducing search

frictions is not excessive, the platform will have an incentive to do so. These predictions

are in line with the common wisdom about dating platforms: despite vast improvements

in their ability to predict users’ preferences using big data and machine-learning algo-

rithms, dating platforms often still provide users with a vast number of potential matches

that are unlikely to be successful.

Remark Our model assumes that the speed of search and the level of screening are

independent of one another. In practice, increasing the speed of search may require the

platform to compromise on its level of screening. Proposition 4 implies that, in such cases,

the increase in the platform’s profit resulting from faster search would be larger than it

is in the current model.13

Technological advances alter the platform’s optimal fee. Basic economic intuition

suggests that better technology is associated with higher prices given the monopolistic

market structure of the model. The next result establishes that this basic intuition is

incorrect when consumers are patient.14

Proposition 5 There exists r⋆ > 0 such that if r < r⋆ then the optimal fee decreases

following an improvement in the speed of search or in the level of screening.

All else being equal, improvements in the speed of search µ increase the agents’ incen-

tive to return to the platform and search for better partners. Thus, one might think that

a better search technology should lead the platform to increase its fee: intuitively, such a

technological advancement counteracts the reduction in the repeat clientele base result-

ing from a higher fee. However, there is a second effect that may not be as transparent:

the marginal effect of increasing the fee on the probability that an agent returns to the

platform depends on µ. Due to the latter (potentially conflicting) effect, the optimal fee

decreases following an improvement in the speed of search.

The intuition behind this result is that as µ increases, a marginal increase in ϕ leads

to a greater reduction in the probability that an agent returns to the platform. In other

13If both the speed of search and the level of screening improve, the effect of technological changes on
the platform’s profit is determined by the change in the conversion rate.

14The assumption that agents are patient is perhaps natural when we compare the amount of time
users typically spend on the platform to the amount of time they spend in a long-term relationship.
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words, there is a complementarity between reducing fees and reducing search frictions

on the size of the platform’s repeat clientele base. Proposition 5 shows that the second

effect dominates the more transparent one when agents are patient. That is, even though

the repeat clientele base increases due to reduced search frictions, the platform further

enhances this growth by reducing its fees.

By contrast, improvements in the level of screening reduce the likelihood that agents

return to the platform (Lemma A.1). Moreover, it can be shown that the negative impact

of a higher fee on the platform’s repeat clientele base increases as screening improves.

Thus, both the direct and indirect effects of an improvement in screening induce the

platform to lower its fee.

4.3 Welfare

Combining our previous results, we arrive at the conclusion that a higher speed of search

leads to a Pareto improvement. Indeed, the increase in consumer surplus due to such

improvements is even amplified by the platform’s response in pricing. By contrast, a

higher level of screening, though it also has a positive effect on consumer welfare, is not

desirable from the platform’s perspective. We summarize these implications in the next

corollary.

Corollary 2 For any r < r⋆:

• Faster search leads to a Pareto improvement in total welfare.

• Better screening leads to an increase in consumer surplus and a reduction in the

platform’s profits.

Corollary 2 suggests that in certain matching markets, the increasing role of online

platforms may lead to underinvestment in screening technology, resulting in consumers

spending a longer average time on the platform, and returning to the platform with

a higher probability. This prediction reflects the tension between profits and customer

goals underlying the lawsuit filed against Match Group. More broadly, it is also consistent

with the phenomenon referred to as the “dating apocalypse” (Sales, 2020), where despite

the growing ease of finding dating partners, it has become increasingly difficult to form a

long-lasting relationship.
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5 Related Literature

This paper contributes to the matching-with-search-frictions literature, which explores the

properties of equilibrium matching under various assumptions on the search technology,

match payoffs, search costs, the ability to transfer utility, and agents’ rationality.15 See

Chade, Eeckhout and Smith (2017) for a comprehensive review of this literature.

The role of a matchmaker in the marriage market has been studied by Bloch and

Ryder (2000) who analyze a model in which a matchmaker can eliminate search frictions.

They show that the matchmaker matches agents with partners of their own “caliber,”

and that if the matchmaker charges a uniform participation fee, then the more desirable

agents are the ones that use the matchmaker’s services. While Bloch and Ryder (2000)

were the first to study the implications of matchmakers on matching markets, they did

not study the matchmaker’s incentives, how they depend on technology, and how they

shape the matching market outcomes.

Within the literature on marriage markets, Chade (2006) and Antler, Bird and Fer-

shtman (2023) incorporate a learning aspect into their models.16 Chade (2006) assumes

that upon meeting, agents observe a noisy signal about one another’s type, and learn

the truth in the following period. He shows that this leads to an “acceptance curse”

whereby the agents that are active in the market appear more attractive than they actu-

ally are. Antler, Bird and Fershtman (2023) explore the effects of pre-match learning on

segregation and sorting in marriage, and show that reducing search frictions can increase

segregation.

In studying the implications of technological improvements on two-sided search mar-

kets, this paper is related to Eeckhout (1999), Bloch and Ryder (2000), Adachi (2003),

Lauermann and Nöldeke (2014), and Antler and Bachi (2022), all of which study the

effects of reductions in search frictions. Unlike the present paper, these papers either im-

pose a cloning assumption or consider only the frictionless limit. Moreover, these papers

focus only on technological changes that improve the speed of search, but do not consider

changes that impact the screening of proposed matches. Furthermore, these papers do

15See, e.g., McNamara and Collins (1990), Morgan (1996), Burdett and Coles (1997), Eeckhout (1999),
Bloch and Ryder (2000), Shimer and Smith (2000), Chade (2001, 2006), Adachi (2003), Atakan (2006),
Smith (2006), Lauermann and Nöldeke (2014), Coles and Francesconi (2019), and Antler and Bachi
(2022).

16Within the more general matching-with-search-frictions literature, Jovanovic (1984) and Moscarini
(2005) incorporate a learning aspect into a two-sided search model to study the effect of post-match
learning on employee turnover.
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not take the platform’s pricing decisions into account.

Markets where agents purchase access to one another are the focus of a vast literature

on two-sided markets pioneered by Caillaud and Jullien (2003), Rochet and Tirole (2003,

2006), and Armstrong (2006).17 Much of this literature is not concerned with the process

by which platform users are matched with one another.18 However, in recent years, a

literature on “matching design” has studied models where platforms match participating

agents in a customized manner, with an emphasis on price discrimination (see, e.g., Gomes

and Pavan, 2016, 2018; Fershtman and Pavan, 2022). In our model, the platform engages

in customized matching, but in contrast to the existing literature, the customization takes

the form of the platform using its information to restrict matching based on the level of

fit between agents.19

The incentives created by the possibility of future sales have also been studied in other

contexts. An extensive literature shows how firms can signal their quality in an initial

period to attract more consumers or charge higher prices in subsequent periods (see, e.g.,

Milgrom and Roberts, 1986; Bagwell and Riordan, 1991). Perhaps closer to our setting

is the literature on planned obsolescence in durable goods markets (see, e.g., Levhari and

Srinivasan, 1969; Schmalensee, 1970; Swan, 1972). In this strand of the literature, firms

trade off current demand and the possibility of enlarging their repeat clientele base by

choosing the durability of their good. In such markets, durability is exogenous in the eyes

of consumers, who purchase again once the product stops working. By contrast, in our

matching model, the decision to return is endogenous from the customers’ perspective.

Customers decide whether a match is successful or not, and this decision trades off the

attractiveness of their current match with the attractiveness of rejoining the platform in

search of new partners, where the latter is determined by the quality of the platform’s

services.

17See Belleflamme and Peitz (2021) and Jullien, Pavan and Rysman (2021) for recent overviews.
18In particular, all users on one side of the platform interact with all users on the opposite side, and

the platform, apart from influencing the participation of each side through the choice of its prices, does
not actively engage in matching agents.

19A related literature studies how consumers’ search behavior is shaped by the presence of a search
engine influencing the search pool. See, e.g., Armstrong, Vickers and Zhou (2009), Athey and Ellison
(2011), Chen and He (2011), Eliaz and Spiegler (2011, 2016), Hagiu and Jullien (2011), White (2013),
and De Corniere (2016).
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6 Concluding Remarks

Radical technological changes have turned online dating platforms into major players

in two-sided matching markets. We analyzed the incentives of such platforms to har-

ness technological advances in the speed of search and in screening the fit of proposed

matches. We found that such advances increase consumer welfare, whereas, despite the

monopolistic nature of the platform and its ability to readjust prices, its profits decline

due to improvements in the level of screening and benefit only from improvements in the

speed of search. These results imply that in a richer setting where the platform can invest

in its technology, it has an incentive to invest in increasing the speed of search and a

disincentive to invest in providing better screening. Thus, despite recent technological

advances, it may be harder for users to find successful matches using dating platforms.

We conclude by discussing several extensions of our model and additional applications.

Asymmetry between the Two Sides of the Market

Throughout the paper, we assumed that both sides of the market are symmetric. This

symmetry allowed us to simplify the exposition and present the analysis succinctly. In

reality, there may be various asymmetries between both sides of the market. For instance,

agents on one side of the market may be interested in long-term relationships, whereas

agents on the other side of the market are more interested in short-term relationships,

which can be reflected by imposing different discount factors. Alternatively, the impor-

tance of the partner’s fit may vary across the two sides of the market, which can be

modeled by variation in β. We now explain why introducing such asymmetries would not

change our results.

In our model, the prospects of a match increase over time. As a result, agents on both

sides of the market use a (side-specific) separation threshold. Since agents can terminate

matches unilaterally, separation choices are driven entirely by the side with the lower

separation threshold (e.g., agents who are interested in long term relationships would

determine this threshold). Technically, this implies that Condition (6) (which determines

the separation threshold) must be evaluated for the “pickier” side of the market. The

only effect the less picky side of the market has on the analysis is that it induces an upper

bound on the fee that is lower relative to the symmetric case (see Equation (5)). Given

these two modifications, our analysis can be applied directly to a market with asymmetries

between groups.
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While the aforementioned examples of asymmetries are exogenous, the platform can

artificially create asymmetry between both sides of the market by charging men and

women different fees. Furthermore, the above discussion suggests that creating such

asymmetries is actually profitable for the platform. To see this, suppose that rather than

charging men and women the same fee ϕ, the platform charges men ϕ+ϵ and women ϕ−ϵ.

Note that the revenue per match from such a scheme is 2ϕ for any ϵ. This pricing scheme

makes women pickier and thereby reduces the conversion rate. If ϵ is small enough such

that men would rather rejoin the platform than stay single, this asymmetry enlarges the

platform’s repeat clientele base and thereby increases its profits.

Implications for the Labor Market

As in the marriage market, new search technologies have changed the way people search

for a job and online platforms are playing an increasingly important role in matching

employers and workers. The main difference between the marriage market and the labor

market in terms of modeling is in the ability to transfer utility: marriage market models

typically assume that utility is nontransferable, whereas labor market models typically

assume that utility is transferable (the latter assumption captures the idea that employers

and potential hires can negotiate wages).

In Online Appendix C we show that the nontransferable utility model in the present

paper is equivalent to a model in which agents’ utility is transferable under the assumption

that the flow surplus from a match is 2×u(α, τ) and that the bargaining over the surplus

generated in a match is settled via the Nash bargaining solution (as is typically assumed

in the literature). Thus, our results imply that job-search platforms (e.g., LinkedIn) have

an incentive to invest in technologies that help match workers and employers at a faster

rate, and a disincentive to invest in technologies that improve the fit of proposed matches.

Flow Subscription Fees

Online platforms often charge users a “flow” subscription fee that allows them to be active

on the platform so long as they continue paying this fee (e.g., a monthly fee). Our analysis

remains valid when the platform uses such a pricing policy rather than charging agents

a single upfront fee that allows them to stay on the platform until they find a match,

regardless of how long it takes.

The agents’ separation choices depend on their expected discounted payment to the
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platform, and not on the exact manner in which the payment is made. Thus, whether ϕ

represents an upfront payment or the expected discounted flow payments until an agent

is matched is irrelevant. Furthermore, the expected cost of two such policies does not

depend on the fit of matches, and hence all of the results with regard to improvements in

the level of screening do not depend on the platform’s pricing policy. On the other hand,

an increase in the speed of search reduces the expected discounted cost of flow payments

but does not alter the cost of an upfront payment. Therefore, to maintain the equivalence

between the two types of pricing policies after an increase in the speed of search the

platform has to increase the flow subscription fee. Since we consider the case where both

the platform and the agents are patient, this modification has a similar impact on both

players, and would not have a qualitative impact on our results.

In theory, a platform could use a more complex dynamic pricing policy. In particular,

the firm could extract all the surplus from trade by using a two-part tariff: allow the

agents to use the platform as often as they want in return for an upfront payment that

equals the expected value of such matching services. This is reminiscent of “selling the

firm to the agent” schemes and is rarely observed in practice as it requires agents to

correctly assess the expected discounted value of receiving costless matching services in

the future.

Revenue from Advertising

In our model the platform generates income only from the fees paid by its users. In

practice, online platforms may generate additional income by exposing their users to

advertisements. If consumers suffer a disutility from being exposed to advertising, then

the choice of the level of advertising is equivalent to the choice of the fee: increasing

the level of advertising is profitable for the platform and costly for consumers. If, on

the other hand, consumers do not suffer any disutility from being exposed to ads, then

advertising revenue increases the value of attracting repeat clientele and has no impact

on consumers.20 Due to the continuity of our model, it can be shown that all our results

hold if the platform obtains a (small) flow payoff from advertising for each active user.

Naturally, as the advertising revenue increases the platform’s value of attracting repeat

clientele, a higher advertising payoff will lead to a lower optimal fee.21

20In some cases, agents strictly benefit from being exposed to (personalized) advertisements. See, e.g.,
Bird and Neeman (2023) and the references therein.

21See proof in Antler, Bird and Fershtman (2024).
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A Proofs

Proof of Lemma 2. Equation (3) follows from a simple algebraic manipulation of the

indifference condition in the main text. Thus, all we need to show is that in a nontrivial

equilibrium αs ∈ (0, θ0).

First, note that αs ≤ 0 is a suboptimal choice for the agents. The value of joining the

platform is bounded from above by µ
µ+r

1
r
: the first ratio is the expected discount factor at

the time of the next meeting, and the second ratio is an upper bound on the discounted

payoff from a match. On the other hand, the discounted payoff from staying in a match

with fit α is 1−βα
r

. Thus, it is suboptimal to terminate a match of fit α ∈ [0, 1−µ/(µ+r)
β

).

Finally, note that if αs ≥ θ0, then agents accept proposed matches with probability

one, and so the resulting equilibrium is trivial.

Proof of Proposition 1. First, we consider nontrivial equilibria in which agents

choose to separate from a partner and return to the platform with positive probability.

To analyze such an equilibrium we assume that αs < θ0, and at the end of this part of

the proof we verify that this inequality holds under Condition (5).

Characterization. We begin by expressing σ,Ws, EVs, and EVn as functions of αs and

the primitives of the model. This will later enable us to use Equation (4) to characterize

the optimal αs.

First, we calculate the expected value of a successful match. Fix α ∈ [0, αs). The flow

payoff to a couple with fit α increases while θt > α and is constant thereafter. Integrating

(1) yields

θt = e−λtθ0,

and so the payoff is increasing for t < T (α), where

T (α) ≡ 1

λ
log

(
θ0
α

)
. (A.1)

It follows that the discounted payoff from an indefinite match between such a couple is

Vs(α) =

∫ T (α)

0

e−rt(1− e−λtβθ0)dt+ e−rT (α)1− βα

r
=

λ− αβλ
(
θ0
α

)− r
λ − θ0βr + r

r(λ+ r)
.

Since the fit of a successful match is distributed uniformly on [0, αs], the expected payoff
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from such a match is given by

EVs =

∫ αs

0

Vs(α)

αs
dα =

λ− αsβλ2( θ0
αs
)
− r

λ

2λ+r
− θ0βr + r

r(λ+ r)
. (A.2)

Next, we calculate the expected payoff (minus the cost of rejoining the platform) that

an agent receives from an unsuccessful match. Note that, by definition, this payoff does

not include the future payoff from rejoining the platform. Fix α ∈ (αs, θ0). A match of

fit α lasts until θt drops to α; that is, it lasts for T (α) units of time. It follows that the

discounted payoff from such a match is

Vn(α) =

∫ T (α)

0

e−rt(1− e−λtβθ0)dt− e−rT (α)ϕ =

(λ− θ0βr + r)−
(
θ0
α

)− r
λ (λ+ r(1− αβ + ϕ(λ+ r)))

r(λ+ r)
.

The distribution of α in unsuccessful matches is uniform over [αs, θ0]. Taking the expec-

tation over the above payoff yields

EVn =

∫ θ0

αs

Vn(α)

θ0 − αs
dα

=

θ0r
(
1− λϕ− θ0β(λ+r)

2λ+r

)
− αs

(
λ+ r − θ0βr + λ

(
θ0
αs

)− r
λ ( αsβr

2λ+r
− rϕ− 1

))
r(θ0 − αs)(λ+ r)

. (A.3)

The expected discount factor at the end of an unsuccessful match is

σ = E
(
e−rTm(α)|α ∼ U [αs, θ0]

)
=

λ

(
θ0 − αs

(
αs

θ0

)r/λ)
(θ0 − αs)(λ+ r)

. (A.4)

Finally, since agents’ tastes are distributed uniformly around the circle, we have that

PS =
αs

θ0
, (A.5)

and by (3) we have that

Ws =
1− αsβ

r
+ ϕ. (A.6)
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Plugging (A.2)–(A.6) into Equation (4) and rearranging yields Equation (6).

Existence and Uniqueness. To see that the nontrivial equilibrium, if it exists, is

unique, note that the LHS of Condition (6) is increasing in αs, whereas its RHS is constant

in αs.

To show that a nontrivial equilibrium exists we must show that there exists αs ∈ (0, θ0)

that solves Equation (6). The RHS of Equation (6) is strictly positive and independent

of αs. On the other hand, the LHS of Equation (6) is increasing in αs and equals zero if

evaluated at αs = 0. Therefore, a nontrivial equilibrium exists if the LHS that is evaluated

at the maximum value of αs, namely, θ0, yields a term that is greater than the RHS, that

is, if

µ+ ξ(ξ + 2)(λξ + λ+ µ) >
λξ(ξ + 2)(ξ + 1)(λξϕ+ µϕ+ 1)

θ0β
+ µξ(ξ + 1), (A.7)

a condition that is equivalent to (5). Moreover, under the assumption that agents act

as if they were pivotal, it must be the case that if the above condition holds, then the

agents’ unique optimal strategy is given by the interior solution of (6). That is, if (A.7)

is satisfied, there is no trivial equilibrium.

Finally, consider the trivial equilibrium. In the trivial equilibrium agents terminate a

match with probability zero. The previous analysis shows that if (5) does not hold, then

an agent prefers staying in a match of fit θ0 to terminating the match and paying ϕ to

return to the platform. By Assumption (7), an agent is better off staying in any match

than terminating it and remaining single. Therefore, if (5) does not hold there is only a

trivial equilibrium in which agents never terminate a match.

Proof of Proposition 2. Note that αs(ϕ) is a differentiable function. The platform

therefore maximizes a differentiable profit function over a closed interval, and hence there

is an optimal fee that is given by a first-order condition. Furthermore, as the platform’s

profit from setting a fee of either 0 or ϕ is zero, the optimal fee is interior and the first-order

condition holds with equality.

The derivative of the firm’s profit with respect to ϕ is

π′(ϕ) =
θ0

αs(ϕ)
− 1− ϕ

θ0α
′
s(ϕ)

αs(ϕ)2
. (A.8)
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Thus, an optimal fee must satisfy

θ0
αs(ϕ)

− 1− ϕ
θ0α

′
s(ϕ)

αs(ϕ)2
= 0,

a condition that is equivalent to Equation (10).

Next, we show that the firm’s profit is concave in ϕ. Implicit differentiation of Equation

(6) yields

α′
s(ϕ) =

θ0λξ(ξ + 1)(λξ + µ)

αsβµ
(

αs

θ0

)ξ
+ θ0βξ(λξ + λ+ µ)

.

Thus, Equation (A.8) can be written as

π′(ϕ) =
γ(ϕ)− ξ(ξ+1)ϕ(µ+ξ)

θ0β(µγ(ϕ)ξ+1+ξ(µ+ξ+1))

γ(ϕ)2
− 1.

The second derivative of π is given by

π′′(ϕ) =
ξ(1 + ξ)(µ+ ξ)

θ20β
2 (µγξ+2 + γξ(µ+ ξ + 1))3

×(
ξ(ξ + 1)ϕ(µ+ ξ)

(
µ(ξ + 3)γξ+1 + 2ξ(µ+ ξ + 1)

)
− 2θ0βγ

(
µγξ+1 + ξ(µ+ ξ + 1)

)2)
,

where, to ease the exposition, we have normalized λ = 1. From Equation (6) it follows

that

ϕ =

θ0β(µγξ+2+γξ(ξ+2)(µ+ξ+1)−µξ(ξ+1))
ξ(ξ2+3ξ+2)

− 1

µ+ ξ
. (A.9)

Plugging this expression into π′′(ϕ) and rearranging yields

π′′(ϕ) =
ξ(1 + ξ)(µ+ ξ)

θ20β
2 (µγξ+2 + γξ(µ+ ξ + 1))3

×(
− µξ(ξ + 2)(ξ + 3)γξ+1 − 2ξ3(µ+ ξ + 1)− 4ξ2(µ+ ξ + 1)

+ θ0β
{
−µ2γ2ξ+3 + µξγξ+1(µ((γ − 1)ξ − 3) + γξ(ξ + 1))− 2µξ2(µ+ ξ + 1)

})
.

Note that the sign of this second derivative is given by the sign of the term in large
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brackets. If the term in curly brackets is negative, then the second derivative is negative.

Otherwise, the second derivative is increasing in θ0β and so it is sufficient to show that

the second derivative is negative at the upper bound of θ0β, namely, θ0β = 1. Evaluating

the term in large brackets at θ0β = 1 yields

−µ2γ2ξ+3 + µξ2γξ+2(µ+ ξ + 1)− µξ(ξ + 3)γξ+1(µ+ ξ + 2)− 2ξ2(µ+ ξ + 1)(µ+ ξ + 2) <

−µ2γ2ξ+3 + µξ2γξ+1(µ+ ξ + 1)− µξ(ξ + 3)γξ+1(µ+ ξ + 2)− 2ξ2(µ+ ξ + 1)(µ+ ξ + 2)

= −µ2γ2ξ+3 − µξγξ+1(3µ+ 4ξ + 6)− 2ξ2(µ+ ξ + 1)(µ+ ξ + 2) < 0,

where the first inequality follows from the fact that γ < 1.

Since π′′(ϕ) < 0, the profit function is concave and it has a unique maximum.

Proof of Proposition 3. From Equation (3) it follows that αs is decreasing in Ws.

To prove this proposition we show that, under Condition (5), Ws is increasing in µ and

decreasing in θ0 and ϕ.

Due to the symmetry of the model and, in particular, the symmetry of the agents’

equilibrium strategies, comparative statics for this model can be analyzed as if it were a

decision problem. By Condition (5), an agent’s optimal strategy is interior and satisfies a

first-order condition. Hence, the envelope theorem applies, and so the impact of marginal

changes in model parameters on an agent’s payoff can be evaluated by how such a change

alters the agent’s payoff under the original equilibrium strategy.

Fixing an agent’s strategy, payoffs in a nontrivial equilibrium are decreasing in ϕ as

the fee is paid with positive probability. Payoffs are also decreasing in θ0 since increasing

θ0 decreases the payoff from any given match. Finally, since an agent does not receive

payoffs while single and receives positive payoffs while in a match, increasing the speed

of search increases the payoffs from the equilibrium strategies.

Proof of Proposition 4. The platform’s profit curve (9) is decreasing in the con-

version rate. In Lemma A.1 below, we establish that, holding ϕ fixed, the conversion

rate is decreasing in both µ and θ0. Hence, by a standard revealed preference argument,

improvements in the speed of search (an increase in µ) increase the platform’s profit,

whereas improvements in the level of screening (a decrease in θ0) decrease its profit.

Lemma A.1 Assume that Condition (5) holds. The conversion rate γ is decreasing in µ

and increasing in θ0.
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Proof. Since αs is decreasing in µ (Proposition 3), it follows that γ = αs

θ0
is also decreasing

in µ. To derive the second part of this result, perform the replacement αs = γθ0 in

Equation (6). This yields the following implicit characterization of the conversion rate:

µγξ+2 + γξ(ξ + 2)(λξ + λ+ µ) =
ξ(ξ + 2)(λ(ξ + 1)(λξϕ+ µϕ+ 1))

θ0β
+ µξ(ξ + 1). (A.10)

Note that the RHS of (A.10) is decreasing in θ0 and independent of γ, whereas the LHS

of (A.10) is increasing in γ and independent of θ0. It follows that γ is decreasing in θ0.

Proof of Proposition 5. To establish this result, we consider separately improvements

in µ and in θ0.

Faster search— By Proposition 2, the platform’s optimal fee is given by equating the

first-order condition (A.8) to zero. Rearranging this equality yields:

−θ0ϕα
(1,0,0)
s (ϕ, µ, θ0)− αs(ϕ, µ, θ0)

2 + θ0αs(ϕ, µ, θ0) = 0, (A.11)

where αs(ϕ, µ, θ0) denotes the solution to (6) as a function of ϕ, µ, and θ0 and α
(Iϕ,Iµ,Iθ0 )
s (ϕ, µ, θ0)

is the partial derivative of αs(ϕ, µ, θ0) with respect to all x ∈ {ϕ, µ, θ0} for which Ix = 1.

To establish the first part of the proposition, we show that the derivative of the LHS of

this first-order condition (A.11) with respect to µ is negative when agents are sufficiently

patient.

Recall that implicit differentiation of Equation (6) yields

α′
s(ϕ) =

θ0λξ(ξ + 1)(λξ + µ)

αsβµ
(

αs

θ0

)ξ
+ θ0βξ(λξ + λ+ µ)

,

whereas solving Equation (6) for ϕ yields

ϕ =
α2
sβµ

(
αs

θ0

)ξ
+ θ0αsβξ(ξ + 2)(λξ + λ+ µ)− θ0ξ(ξ + 1)(θ0βµ+ λ(ξ + 2))

θ0λξ (ξ2 + 3ξ + 2) (λξ + µ)
.

Plugging these expressions into the first-order condition (A.11), and evaluating it at r = 0,

yields
1

2
(θ0 − 2αs)αs.

It follows that, under the optimal fee, αs → θ0
2
as r converges to zero.
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The derivative of the LHS of the first-order condition (A.11) with respect to µ is

(θ0 − 2αs(ϕ, µ, θ0))α
(0,1,0)
s (ϕ, µ, θ0)− θ0ϕα

(1,1,0)
s (ϕ, µ, θ0). (A.12)

Implicit differentiation of (6) yields

α(0,1,0)
s (ϕ, µ, θ0) =

θ0ξ(ξ + 1)(θ0β + λ(ξ + 2)ϕ)− α2
sβ
(

αs

θ0

)ξ
− θ0αsβξ(ξ + 2)

β(ξ + 2)

(
αsµ

(
αs

θ0

)ξ
+ θ0ξ(λξ + λ+ µ)

) ,

which, in turn, yields

α(1,1,0)
s (ϕ, µ, θ0) =

θ0λξ(ξ + 1)

β(ξ + 2)

(
αsµ

(
αs

θ0

)ξ
+ θ0ξ(λξ + λ+ µ)

)2(
αsβµ

(
αs

θ0

)ξ
+ θ0βξ(λξ + λ+ µ)

)×

(
µ(ξ + 1)

(
αs

θ0

)ξ

(λξ + µ)

(
α2
sβ

(
αs

θ0

)ξ

+ θ0αsβξ(ξ + 2)− θ0ξ(ξ + 1)(θ0β + λ(ξ + 2)ϕ)

)

+ βλξ(ξ + 2)

(
θ0 − αs

(
αs

θ0

)ξ
)(

αsµ

(
αs

θ0

)ξ

+ θ0ξ(λξ + λ+ µ)

))
.

Normalizing λ = 1, plugging the above derivatives into (A.12), and evaluating it at

αs =
θ0
2
yields

−r

2θ0β2(r + 2)2(µ+ r) (µ+ 2r+1r(µ+ r + 1))
3×(

θ0βµ+ 2r+1r((r + 1)(r + 2)(θ0β − 2)− θ0βµr)
)
×(

−θ0βµ+ θ0β4
r+1r(r + 2)(µ+ r + 1)− 2r+1

(
2θ0βµr(r(r + 3) + 3) + θ0βr(r + 2)(r + 1)− 2µ(r + 2)(r + 1)2

))
.

The first term of the above product is negative. Thus, to evaluate the sign of this cross-

derivative as agents become patient, it is sufficient to evaluate the product of the latter

two terms when r → 0. Doing so yields

θ0βµ
2(8− θ0β) > 0,

where the inequality follows from Assumption 2. That is, the cross-derivative of the profit

with respect to µ and ϕ is negative when agents are patient. Due to the continuity of

the model in r, there exists r⋆1 > 0 such that if r < r⋆1, then (A.12) is negative. This

completes the first part of the proof.
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Better screening— The optimal fee is determined by the solution of the first-order

condition (A.11), which can also be written as

−ϕα(1,0,0)
s (ϕ, µ, θ0)−

αs(ϕ, µ, θ0)
2

θ0
+ αs(ϕ, µ, θ0). (A.11a)

Differentiating this representation of the first-order condition with respect to θ0 yields

αs(ϕ, µ, θ0)
(
αs(ϕ, µ, θ0)− 2θ0α

(0,0,1)
s (ϕ, µ, θ0)

)
θ20

+ α(0,0,1)
s (ϕ, µ, θ0)− ϕα(1,0,1)

s (ϕ, µ, θ0).

(A.13)

To show that this derivative is positive, we follow the same steps as in the first part

of the proof: we use implicit differentiation of (6) to calculate the derivatives of αs, use

(A.9) to replace ϕ, normalize λ = 1, use the change of variable αs = γθ0, and evaluate

the resulting condition at r = 0 and γ = 1
2
.

By implicit differentiation of (6) we have that

α(0,0,1)
s (ϕ, µ, θ0) =

αs

θ0
− λξ(ξ + 1)(λξϕ+ µϕ+ 1)

αsβµ
(

αs

θ0

)ξ
+ θ0βξ(λξ + λ+ µ)

,

and that

α(1,0,1)
s (ϕ, µ, θ0) =

θ0λ
2µξ2(ξ + 1)3

(
αs

θ0

)ξ
(λξ + µ)(λξϕ+ µϕ+ 1)

β2

(
αsµ

(
αs

θ0

)ξ
+ θ0ξ(λξ + λ+ µ)

)3 .

Plugging these two expressions into (A.11a), using the change of variable αs = γθ0,

normalizing λ = 1, and rearranging yields

γ − γ2 − θ0λ
2µr2(r + 1)3ϕγr(µ+ λr)(µϕ+ λrϕ+ 1)

β2 (θ0µγr+1 + θ0r(λ+ µ+ λr))3

+
2γλr(r + 1)(µϕ+ λrϕ+ 1)

θ0βµγr+1 + θ0βr(λ+ µ+ λr)
− λr(r + 1)(µϕ+ λrϕ+ 1)

θ0βµγr+1 + θ0βr(λ+ µ+ λr)
. (A.14)

Finally, plugging (A.9) into (A.14) and evaluating the resulting condition at r = 0 and

γ = 1
2
yields 1

8
. That is, the cross-derivative of profit with respect to θ0 and ϕ is positive

when agents are patient. By continuity, there exists r⋆2 > 0 such that if r < r⋆2 then the

marginal value of increasing ϕ increases with θ0. Thus, better screening – i.e., a decrease
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in θ0 – leads to a reduction in the optimal fee.

The proposition is established for r⋆ = min{r⋆1, r⋆2}.

B Online Appendix: Quadratic Search

In this appendix we show that the main results of the paper hold if the search technology

is quadratic (rather than linear). That is, in this appendix we assume that the rate at

which an agent meets potential partners is given by νM∗, where M∗ is the steady-state

mass of agents on each side of the platform, and ν > 0 measures the speed of search.

Throughout the appendix, we assume that if there exist both a trivial and a nontrivial

equilibrium, the latter will be played. Except for this selection assumption, all of the

modeling assumptions remain as in the main text.

B.1 Steady-State Equilibrium

In this appendix, we use steady-state equilibrium as our solution concept. In a steady-

state equilibrium, the platform specifies a fee, ϕ ≥ 0, and agents respond to this choice

by selecting the optimal stationary strategy, αs. Finally, in a steady-state equilibrium,

the measure of agents that are active on the platform must be consistent with the agents’

strategies and must not change over time. That is, the flows into and out of the platform

must be balanced and the measure of agents that are active on the platform must not

change over time.

The outflow of agents from the platform is equal to the measure of meetings

OF = ν(M∗)2.

The inflow of agents is the sum of the exogenous arrival of new agents and the measure

of agents that terminate their match and return to the platform. As a match results in

eventual termination with probability 1− αs

θ0
, the inflow is given by

IF = η + (1− αs

θ0
)ν(M∗)2.

In the steady state, the inflow equals the outflow. Hence, the steady-state measure of
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agents that are active in the platform can be found by solving IF = OF , which yields

M∗ =

√
θ0η

αsν
.

B.2 Agents’ Behavior

The agents’ behavior characterized in Equation (6) was derived under the assumption

that an agent meets potential partners at rate µ. In the steady state of the model with

quadratic search technology the meeting rate of a given agent is νM∗. Replacing µ with

νM∗ in Equation (6) and rearranging yields

√
η
√
ν

(
α2
sβ

(
αs
θ0

)ξ
+θ0αsβξ(ξ+2)−θ0ξ(ξ+1)(θ0β+λ(ξ+2)ϕ)

)
√
αs

+
√
θ0λξ(ξ + 1)(ξ + 2)(αsβ − λξϕ− 1)

θ
3/2
0 β

= 0.

(B.1)

Using the change of variable αs = γθ0 in Equation (B.1) and rearranging yields that the

equilibrium behavior is characterized by the root of

F = θ0
√
η
√
ν
(
θ0β

(
γξ+2 + γξ(ξ + 2)− ξ(ξ + 1)

)
− λξ(ξ + 1)(ξ + 2)ϕ

)
+ θ0

√
γλξ(ξ + 1)(ξ + 2)(θ0βγ − λξϕ− 1). (B.2)

Next we show that this equation has at most one positive root; i.e., there cannot exist

multiple nontrivial equilibria. The second derivative of F with respect to γ is

∂2F

∂2γ
=

(ξ + 1)(ξ + 2)
(
4θ0β

√
η
√
νγξ+ 3

2 + λξ(3θ0βγ + λξϕ+ 1)
)

4γ3/2
> 0,

and evaluating F at γ = 0 yields

−√
η
√
νξ(ξ + 1)(θ0β + λ(ξ + 2)ϕ) < 0.

That is, F is a convex function that is negative at γ = 0, and so it can have at most one

positive root.

This root represents a nontrivial equilibrium if it is less than 1 (as γ ∈ (0, 1) in a

nontrivial equilibrium). Since F is convex and negative at zero, its root is less than one
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if and only if F evaluated at λ = 1 is strictly positive. This occurs if

ϕ < ϕq ≡ θ0β
(√

η
√
ν + λξ(ξ + 2)

)
− λξ(ξ + 2).

If ϕ ≥ ϕq, then the only equilibrium is the trivial one. However, unlike the baseline

model, if ϕ < ϕq, there can be both a trivial and a nontrivial equilibrium. Intuitively,

if all agents accept their initial partner, the matching rate on the platform goes down,

which, in turn justifies an agent’s decision to remain with their initial partner. Recall

that it is assumed that if a nontrivial equilibrium exists, then this is the equilibrium that

will be played. Under this selection assumption, the above analysis replicates Proposition

1 for the quadratic search technology.

B.3 The Platform’s Pricing Problem

To make the platform’s problem nondegenerate, for the rest of this section we assume

that ϕq > 0. That is, we assume that

θ0β
(√

η
√
ν + λξ(ξ + 2)

)
> λξ(ξ + 2).

As in the baseline model, setting a fee of zero or ϕq is suboptimal. Moreover, the platform’s

first-order condition derived in the main model depends on the search technology directly

only through its effect on γ, and so the characterization of the the platform’s optimal fee

provided in Equation (10) remains valid. In the case of quadratic search technology, we

show that the optimal fee is unique only in the case where agents are patient. The marginal

profit from increasing ϕ is still given by Equation (A.8); however, under quadratic search,

α′
s(ϕ) =

2θ0
√
γλξ(ξ + 1)

(√
γλξ +

√
η
√
ν
)

θ0β
(
2
√
η
√
νγξ+ 3

2 + 2
√
γ
√
η
√
νξ + 3γλξ(ξ + 1)

)
− λξ(ξ + 1)(λξϕ+ 1)

. (B.3)

Moreover, under quadratic search and the normalization of λ = 1 we have that

ϕ = −
−θ0β

√
η
√
ν
(
γξ+2 + γξ(ξ + 2)− ξ(ξ + 1)

)
− θ0βγ

3/2ξ(ξ + 1)(ξ + 2) +
√
γξ(ξ + 1)(ξ + 2)

ξ(ξ + 1)(ξ + 2)
(√

γξ +
√
η
√
ν
) .

(B.4)
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Plugging α′
s(ϕ) into Equation (A.8), differentiating with respect to ϕ, normalizing λ = 1,

and plugging in the expression for ϕ derived in (B.4) and ξ = 0 yields

− 1

4θ0βγ3
√
η
√
ν
.

That is, the platform’s profit function is concave when agents are patient. Thus, we have

reestablished Proposition 2 in the case where agents are patient.

B.3.1 The conversion rate

Recall that the platform’s profit curve is ( 1
γ
− 1)ϕ, and thus to determine the effect of

technological advances on the platform’s profit, we show how the conversion rate depends

on the platform’s technology. To this end, it is more convenient to characterize the

equilibrium conversion rate by the roots of G = F
θ0β

√
γ
. The partial derivatives of G are

given by

∂G

∂γ
=

θ
3/2
0

√
η
√
ν
(
(2ξ + 3)γξ+2 + γξ(ξ + 2) + ξ2 + ξ

)
2(θ0γ)3/2

+

√
θ0
√
ηλ

√
νξ(ξ + 1)(ξ + 2)ϕ

2β(θ0γ)3/2
+ λξ(ξ + 1)(ξ + 2),

∂G

∂θ0
=

λξ(ξ + 1)(ξ + 2)
(√

θ0γ(λξϕ+ 1) +
√
θ0
√
η
√
νϕ
)

θ20β
√
θ0γ

,

∂G

∂ν
=

√
η
(
θ0β

(
γξ+2 + γξ(ξ + 2)− ξ(ξ + 1)

)
− λξ(ξ + 1)(ξ + 2)ϕ

)
2
√
θ0β

√
ν
√
θ0γ

.

Note that ∂G
∂γ
, ∂G
∂θ0

> 0, and so implicit differentiation of G = 0 yields ∂γ
∂θ0

< 0. That

is, better screening – i.e., a reduction in θ0 – increases the conversion rate. To show that

the conversion rate is decreasing in ν it is enough to show that ∂G
∂ν

> 0. That is, we must

show that

θ0β
(
γξ+2 + γξ(ξ + 2)− ξ(ξ + 1)

)
− λξ(ξ + 1)(ξ + 2)ϕ > 0. (B.5)

Since in equilibrium G = 0, we have that

ϕ =
λξ

√
θ0γ
(
θ0βγ

ξ+2 − θ0β (γ(ξ + 2) + ξ2 + ξ) + (ξ + 1)(ξ + 2)
)

λξ
√
θ0γ +

√
θ0
√
η
√
ν

. (B.6)
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Plugging (B.6) into (B.5) and rearranging yields

θ0βγ
ξ+2 − θ0β

(
γ(ξ + 2) + ξ2 + ξ

)
+ (ξ + 1)(ξ + 2) > 0. (B.7)

Since γ < 1 and ξ > 0, the LHS of Equation (B.7) is decreasing in γ. Thus, to establish

that (B.7) holds it is sufficient to show that it holds at γ = 1, that is, to show that

(ξ + 1)(1 + (1 + ξ)(1− θ0β)) > 0,

an inequality that holds by Assumption 2, which stipulates that βθ0 < 1. Thus, we have

established Lemma A.1 in the case of a quadratic search technology.

This analysis shows that improvements in the speed of search – an increase in ν – leads

to an upward shift of the profit curve, whereas improvements in the level of screening –

a reduction in θ0 – leads to a downward shift of the entire profit curve. This establishes

Proposition 4 in the case of a quadratic search technology.

B.3.2 Technology and Pricing

This subsection establishes that technological improvements lead to lower prices. The

platform’s first-order condition (A.11) is the same under quadratic search. Plugging (B.3)

and (B.4) into this first-order condition, normalizing λ = 1, and evaluating the first-order

condition yields 1
2
αs(θ0 − 2αs). That is, just like under a linear search technology, the

optimal conversion rate is 1
2
when agents are patient.

To establish the effect of technological advances on pricing we proceed in the same

manner as in the baseline model. We use implicit differentiation of Equation (B.1) to

calculate the derivatives and cross-derivatives of αs. We then use these derivatives and

(B.4) to sign the cross-derivatives of the platform’s profit at r = 0, γ = 1
2
. Doing so yields

that the sign of ∂2π
∂ϕ∂ν

is equal to the sign of

− θ0β + 8

32
√
2β

√
ην3/2

< 0,

whereas the sign of ∂2π
∂ϕ∂ν

is equal to the sign of 1
8
. That is, both faster search and better

screening – an increase in ν and a reduction in θ0, respectively, – decrease the marginal

value of increasing ϕ. That is, technological advances lead to a reduction in the optimal

fee, as established by Proposition 5 for a linear search technology.
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C Online Appendix: Transferable Utility

In the main text, we presented a model in which agents on both sides of the market cannot

make any transfers. Such models are often used to analyze interactions in the marriage

market. In this appendix, we modify the model by assuming that couples can transfer

utility in order to make it suitable to analyze interactions in the labor market. We then

show that the two models are formally equivalent.

Let us modify the model such that while agents x and y are together for τ units of

time, they generate a flow payoff of 2(1 − β ·max{α(x, y), θτ}), where α(x, y) and β are

as defined in the main text. We assume that agents x and y share the payoff according to

the Nash bargaining solution with equal bargaining weights. This assumption is in line

with various papers in the search-and-matching literature (see, e.g., Shimer and Smith,

2000). All other modeling assumptions remain as in the main text.

We shall refer to the model in the main text as the NTU model and to the model in

the appendix as the TU model.

Proposition 6 Any profile of strategies that constitutes an equilibrium in the NTU model

is also an equilibrium in the TU model.

Proof. Consider the TU model and a profile of strategies that is an equilibrium of

the NTU model. Note that due to the symmetric bargaining weights, the symmetric

strategies, and the symmetric distributions of singles on both sides of the market, each

agent x obtains a flow payoff of 1−β ·max{α(x, y), θτ} after spending τ units of time with

agent y. Hence, the continuation value at any point in the game is the same as in the

the NTU model. Since no agent has a profitable deviation in the NTU model, it follows

that no agent has a profitable deviation in the TU model, and so our profile constitutes

an equilibrium in the TU model.
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