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Abstract 

We experimentally examine how individuals stop risky processes (e.g., the evolution of prices) when 

they have commitment power. Although the participants know the process’ drift, they fail to assess 

the extent to which changes in their stopping decisions alter the probability that the process ends at a 

gain. Thus, they must trade off between the potential prizes and the winning probabilities in a 

qualitative manner. We find a type who consistently chooses stopping rules with large potential losses 

and small potential gains in order to induce a high winning probability, although such choices entail a 

large downside risk. We also find a less common type who chooses stopping rules with the opposite 

characteristics. We show that both of these patterns are inconsistent with leading theories of choice 

under risk.  
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1. Introduction  

Stopping problems appear in numerous contexts in economics and finance, ranging from option 

pricing and job search to experimentation, technology adoption, and gambling. In these 

problems, an individual observes a sequence of realizations of a stochastic process and must 

decide when to stop the process. Well-known results from the theoretical literature on stopping 

problems have established that optimal stopping can be described by a simple cutoff rule, 

namely, stopping the process once the individual’s payoff reaches a threshold. 

 Remarkably, and despite the optimality of cutoff rules and the fact that they are quite 

simple and easy to describe, individuals often exhibit behavior that is inconsistent with a cutoff 

rule. The dynamic nature of stopping problems triggers emotions such as regret, disappointment 

and elation, which may lead to dynamically inconsistent behavior and make it difficult for 

individuals to implement their preferred stopping plan. For example, in a recent lab experiment, 

Strack and Viefers (2018) documented history-dependent behavior that is consistent with regret 

aversion. Biases and departures from optimal stopping can lead to detrimental outcomes. For 

example, the negative feelings that are associated with realizing losses may lead investors to hold 

on to badly-performing stocks (Shefrin and Statman, 1985). Moreover, these biases make it 

difficult to infer individuals’ preferences from their observed behavior and in turn the effect of 

these biases on their behavior. 

 A natural way to mitigate biases that arise during dynamic play is to commit to a stopping 

plan in advance or to delegate the execution to a third party (e.g., stop-loss and take-gain orders 

in stock trading). The ability to commit enables individuals to choose an optimal stopping plan 

without worrying about their ability to implement it. Thus, not only does understanding how 

individuals choose a stopping plan when they have commitment power help us to understand 

behavior in real-world stopping problems, it can also provide a true picture of the biases that 

arise in dynamic play, which is the first step in mitigating them. Our main research objective is to 

experimentally examine how individuals make stopping plans when they have commitment 

power. 

 In order to understand the setting and the tradeoffs that emerge in stopping problems, consider 

a decision maker (DM) who faces an infinite sequence of lotteries, where each lottery pays 1 with 

probability p and −1 with probability 1−p. This binomial process can approximate the movement of 

real prices or the value of a stock. Under various theories of decision making under risk, the DM’s 

optimal stopping plan can be described by an upper bound h>0 and a lower bound l≤0 such that the 

DM stops the process once his net payoff hits one of these bounds.  The higher h is, the less likely the 

process is to reach h before it reaches l; correspondingly, the lower l is, the less likely the process is to 

reach l before it reaches h. Thus, when choosing these bounds, the DM trades off the probability of 
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winning and the size of the potential gain/loss. How do individuals settle this tradeoff when the 

baseline lottery is fair (i.e., p>0.5), as is typically the case in the stock market? To what extent, if at 

all, does their behavior differ when the baseline lottery is unfair (i.e., p < 0.5), as in a casino setting? 

 In order to better understand the problem, consider the two cutoff rules presented in Figure 1. 

Under both rules, the sequence stops once the DM accumulates a net loss of 20. Under a (b) the 

sequence stops once the DM accumulates a gain of 10 (30). We refer to cutoff rules for which the 

upper bound is smaller (larger) in absolute terms than the lower bound as left-biased (right-biased). 

The likelihood that the sequence ends at a loss is smaller under the left-biased rule a, while the 

potential gain is greater under the right-biased rule b. Thus, when the DM chooses between the two 

rules he is trading off potential gain against the probability of a gain. 

 

Rule Lower bound Upper bound  

a -20 +10  

b -20 +30  

Figure 1. Two cutoff rules with the same lower bound. 

 

In expectation, under the left-biased rule a, the DM participates in a smaller number of 

lotteries. Thus, when the baseline lottery is unfair (i.e., p < 0.5), a risk-neutral (or risk averse) 

expected utility maximizer would choose the left-biased rule. Our participants’ choices match this 

prediction quite well. In problems in which we fixed the rules’ potential loss and varied their 

potential gain, 63% of the participants consistently chose left-biased rules, whereas only 12% of 

them consistently chose right-biased rules.
1
  

In a symmetric manner, when the baseline lottery has a positive expected value, a risk-

neutral individual would choose the right-biased rule b. Indeed, 36% of the participants consistently 

chose right-biased rules in this case. Remarkably, even in this case, many of the participants (37%) 

consistently put a larger weight on the winning probabilities (or, according to their explanations, the 

probability of not losing) and chose left-biased rules (see Table 2). 

Consider the analogous case of an individual who chooses between two cutoff rules that 

share the same upper bound, as in Figure 2. As a benchmark, note that a risk-neutral expected 

utility maximizer would prefer the left-biased rule d if the baseline lottery is fair (p>0.5) and the 

                                                           
1
 In each decision problem, the participants chose one rule out of five: two right-biased, two left-biased, 

and one symmetric. 
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right-biased rule c if it is not. Despite the larger potential loss, roughly half of the participants chose 

a left-biased rule in at least 5 out of 6 problems in which the upper cutoff was fixed: 52% when the 

baseline lotteries were unfair and 48% when the baseline lotteries were fair.  

 

Rule Lower bound Upper bound  

c -10 +20  

d -30 +20  

Figure 2. Two cutoff rules with the same upper bound. 

 

Our main finding is a general tendency to consistently choose either left-biased rules or 

right-biased rules. In all the types of problems (no fixed bounds, fixed lower bound, and fixed upper 

bound), the majority of the participants tended to choose left-biased rules and this tendency was 

stronger when the baseline lottery was unfair. The participants’ explanations suggest that when 

p<0.5 they focus on minimizing the probability of finishing the game with a loss, whereas in the case 

of p>0.5 they put a larger weight on the size of the potential gain. The focus on the stopping rules’ 

induced probabilities, even at the expense of greater potential losses (e.g., choosing rule d over rule 

c) is somewhat surprising since the rules’ induced odds were not explicitly given in the experiment 

(rather only the baseline lottery’s odds p were given), which should have made the gains and losses 

more salient than their respective probabilities. 

At the individual level, the participants were consistent in their tendency to choose either 

left-biased or right-biased rules throughout the experiment and we were able to classify them into 

types. Participants who chose left-biased rules in a large proportion of the decision problems were 

classified as L types and those who chose a right-biased rule as R types.
2
 Over 64% of the 

participants were classified as types, where the vast majority of them were L types. 

The experimental design allows us to test whether or not the above findings can be explained 

by various theories of decision-making under risk, such as risk aversion and loss aversion. We 

classified the participants into types according to these theories using the same method mentioned 

above and found that solving the tradeoff between the size of the prizes and the winning probability 

in a consistent manner (i.e., consistently choosing either left-biased rules or right-biased rules) 

explains the data better than any of the other theories we examined. The participants’ behavior, 

                                                           
2
 The proportion was defined such that the probability of being classified as a particular type under random 

choice was below 0.01. 
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together with their explanations, suggest that they try to solve a simple tradeoff between the 

likelihood of winning or losing and the size of the prizes and that the way in which the participants 

solve this tradeoff depends on the favorability of the baseline lottery and on whether or not the 

potential loss is fixed. In fact, some of the participants’ choices were consistent with employing a 

lexicographic heuristic, with the criteria being the probability of winning and the size of the prizes. 

 

Related literature 

The present paper is related to a recent strand of the experimental literature that investigates dynamic 

stopping decisions. Oprea et al. (2009) examine irreversible investment decisions in the lab and find 

that, after some learning, individuals can approximate the optimal exercise of wait options. In 

Magnani (2017), participants are rewarded according to the higher between the current value of a 

state variable and a constant value, such that their optimal behavior is to follow a cutoff rule. At the 

aggregate level, the observed pattern of stopping behavior is consistent with the disposition effect 

(Shefrin and Statman, 1985) since individuals liquidate too early when they are ahead and too late 

when they are behind. 

Fischbacher et al. (2017) show that stop-loss and take-gain strategies mitigate the disposition 

effect. The following aspects of their design make it considerably different from ours: (i) the lack of 

commitment power, (ii) the fact that each participant effectively chooses a stopping rule once, and 

(iii) the lack of knowledge of the baseline lottery’s drift (i.e., p). Thus, while their design allows 

them to investigate the effect of stop-loss and take-gain strategies on an individual’s tendency to 

hold on to losing assets, it cannot be used to determine the type of rules an individual chooses, the 

consistency of these choices, and how they depend on the favorability of the underlying process.  

Strack and Viefers (2018) investigate dynamic stopping behaviour both theoretically and 

experimentally. Their participants dynamically choose when to stop a multiplicative random walk 

and exhibit history-dependent behavior that is consistent with regret aversion and inconsistent with 

cutoff rules. Sandri et al. (2010) found that even entrepreneurs tend to hold on to a badly-performing 

asset longer than is consistent with real options reasoning. Aloui and Fons-Rosen (2017) find that 

grittier individuals have a higher tendency to over-gamble relative to their original plans. In their 

experiment, the lotteries are unfair and most of the individuals choose to play even though they are 

not obliged to do so.  
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In none of the aforementioned papers, however, do the participants have commitment power. 

Moreover, the bulk of this strand of the literature focuses on dynamic play rather than planning 

(Aloui and Fons-Rosen, 2017 being the exception). 

Stopping plans have been studied indirectly in the experimental literature on dynamic 

inconsistency, which focuses on deviations from planning (without commitment) when individuals 

face a small number of lotteries. Barkan and Busmeyer (1999, 2003) and Ploner (2017) find 

evidence of dynamically inconsistent behavior in settings where individuals decide whether to 

participate in an additional lottery after experiencing a single outcome. Cubitt and Sugden (2001) 

could not reject dynamic consistency when participants had to decide how many all-or-nothing 

additional gambles to participate in after winning in four mandatory rounds.   

The present paper is also related to the literature on skewness-seeking and prudent behavior. 

Skewness corresponds to our notion of left/right-biased stopping rules. The more right-biased a rule 

is, the more positively skewed its induced lottery. Golec and Tamarkin (1998) find evidence of 

skewness-seeking behavior in horse-race betting. Brunner et al. (2011), Deck and Schlesinger (2010, 

2014), Ebert and Wiesen (2011, 2014), Ebert (2015), Grossman and Eckel (2015), Maier and Rüger 

(2012), and Noussair et al. (2014) provide evidence for skewness-seeking and/or prudent behavior in 

lab experiments. Bleichrodt and van Bruggen (2018) find prudent behavior in the gain domain and 

imprudent behavior in the loss domain. A prominent explanation for skewness-seeking is probability 

distortion (Barberis, 2012; Ebert and Strack, 2015). 

There are several differences between our setting and the typical setting in this strand of the 

literature. The experiments on skewness-seeking and prudent behavior examine choices between 

lotteries with identical means and variance. In contrast, the stopping rules in our setting induce 

compound lotteries with different means and variance, such that prudence does not imply a tendency 

to choose right-biased rules (e.g., given the two rules in Figure 1, a prudent individual might choose 

the left-biased rule when p < 0.5 since it induces a greater expected value and a smaller variance than 

the right-biased rule). Moreover, reducing a stopping rule to its induced lottery is a daunting task 

since the participants know only the probability of winning a single baseline lottery. (For example, 

Halevy, 2007, establishes that even in simpler settings individuals often fail to reduce compound 

lotteries.) Thus, our setting encourages reasoning in qualitative terms, which is less likely to be 

triggered in the typical setting in the literature on skewness-seeking and prudence.   

 

The paper proceeds as follows. Section 2 presents the experimental design and Section 3 

describes the results on both the aggregate and individual levels. In Section 4, we classify the 
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participants into R and L types according to their choices.  In Sections 5 and 6, we investigate the 

mechanisms that underlie our key findings and Section 7 concludes.  

 

2. Experimental Design 

The experiment was carried out in the Interactive Decision Making Lab at Tel Aviv University. The 

participants were 114 Tel Aviv University undergraduate students in various fields of study, 44% of 

whom were women. The average age was 25. Recruitment of participants was done via ORSEE 

(Greiner, 2004).  

Each participant received 55 shekels (roughly $15) at the beginning of the experiment. In 

order for the participants to internalize this, we notified them one week prior to the session that they 

will receive this endowment (and that they may lose part of it or gain an additional amount, depending 

on their choices in the experiment). This message was sent again the day before the session. The 

experiment included 57 computerized decision problems (we often refer to these problems as 

questions), one of which was randomly selected at the end of the experiment to determine the 

payment for each participant. The amount won (or lost) in that game was added to or subtracted from 

the initial endowment. In practice, each participant could win at most 45 additional shekels or could 

lose at most 28 shekels out of his initial endowment. All sessions were completed within an hour. 

 

2.1 Detailed description of the experiment 

The experiment consisted of two random treatments, denoted T0 and Tp, and the questions were 

divided into four parts, as described below. Of the 114 participants, 67 were assigned to the main 

treatment, T0, and 47 were assigned to Tp. The complete questionnaire can be found in Appendix B. 

Part A (Part B) examined the choice of a stopping rule when the baseline lottery has a negative 

(positive) expected value. Part C explored the participants’ ability to estimate the rules’ induced 

probabilities. Part D studied a slightly different setting in which the participants chose between pairs 

of binary lotteries that were characterized by a known probability of gain, an expected value of zero, 

and identical variance and kurtosis. Its main objective was to determine whether the participants 

exhibit a “pure” preference for skewness (and how that preference relates to the choices made in parts 

A and B).    
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Part A. In this part of the experiment, the participants faced a sequence of computerized lotteries, 

each with a probability of 18/37 to win 1 shekel and 19/37 to lose 1 shekel (henceforth, the baseline 

lottery). These probabilities resemble the win/loss probability in the “Red or Black” roulette game. In 

each decision problem, the participants were asked to choose a cutoff stopping rule (i.e.,  to choose 

two thresholds, one positive and one negative, such that once a participant’s accumulated gain or loss 

hits one of the two thresholds the game would stop). The participants were presented with 18 decision 

problems and chose one out of five alternative stopping rules in each. In the case of the problem 

randomly selected for payment, the stopping rule was automatically and instantaneously  implemented 

by the computer. 

The only difference between the two treatments was that in Tp the participants were informed 

of the probability of ending the game with a gain for each of the five stopping rules, whereas in T0 

they were not (in both treatments the participants were informed about the winning probability in the 

baseline lottery).  This difference allows us to examine the extent to which the choice patterns 

observed in T0 were affected by the participants' knowledge of the rule’s induced  probability of 

winning in Tp.  

We considered three types of decision problems, as illustrated in Figure 3.  In Questions 1-6 

(fixed loss) the participants chose from among five stopping rules with the same loss at which the 

process is stopped but that vary in the size of the gain. In Questions 7-12 (fixed gain) the participants 

chose from among five stopping rules with the same gain at which the process is stopped but that vary 

in the size of the loss. In Questions 13-18 (not fixed) both the gain and loss vary.  

In each decision problem, there are two stopping rules in which the potential loss is greater 

than the potential gain, two in which the potential gain is greater than the potential loss, and one in 

which they are equal. We refer to them as left-biased, right-biased, and symmetric, respectively. The 

five stopping rules were randomly ordered either from the left-biased rule with the largest loss and 

smallest gain to the right-biased rule with the largest gain and smallest loss (as in Figure 3) or vice 

versa.
3
 Thus, the five stopping rules were either always ordered from the highest to the lowest 

probability of a gain or the other way around.  

 

           

 

                                                           
3
 The randomly selected order was used consistently throughout Parts A and B.  The results suggest that the 

order did not affect the choices in the experiment and hence we merge the data from the two variations in the 

analysis. 
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Type (i) 

lottery loss gain probability of gain 

a -21 +9 52% 

b -21 +15 35% 

c -21 +21 24% 

d -21 +27 17% 

e -21 +33 12% 

 

          Type (ii) 

lottery loss gain probability of gain 

a -20 +12 42% 

b -16 +12 39% 

c -12 +12 34% 

d -8 +12 %28  

e -4 +12 %18  

 

                                            Type (iii) 

lottery loss gain probability of gain 

a -27 +15 38% 

b -24 +18 31% 

c -21 +21 24% 

d -18 +24 %19  

e -15 +27 %14  

 

Figure 3. The three types of questions in Part A. The probability of a gain given each stopping rule is provided 

for the readers’ convenience; only participants in Tp received information on the probability of a gain or a loss 

given the stopping rule. In particular, the following sentence: “The probability that the process ends at a gain is 

q% and the probability that it ends at a loss is (100-q)%” was presented below the description of the rule (see 

Appendix B). 
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Part B.  This part is similar in structure to Part A, in that there are 18 problems of the same three 

types described above. The main difference is that the probabilities of gain and loss in the baseline 

lottery are reversed in Part B (i.e., the probability of winning in a single lottery is 19/37). In addition, 

we tried to diversify the problems in Part A and B in order to prevent a feeling of repetition. Thus, the 

stopping rules in Part B are similar to those in Part A, though not identical. 

 

Part C. Part C consists of three problems, each of which presents a different stopping rule. In all three 

problems, the participants were asked to consider a baseline lottery that pays 1 shekel with probability 

18/37 and -1 shekel with probability 19/37 (as in Part A) and to estimate the probability that the game 

will end at a gain given the stopping rule. In particular, in Problem 1, they had to gauge the 

probability of finishing the game with a gain of 25 given that the stopping rule is (-25, +25). Problems 

2 and 3 were similar except that the stopping rules were (-25, +50) and (-25, +100), respectively. The 

correct answers to these three questions are roughly 20.5%, 5% and 0.3%, respectively. The payment 

for each of the problems in Part C (in case one of these problems was selected for payment) was 40 

NIS minus the size (in absolute terms) of the error in the participant’s estimation. There was no 

difference between the two treatments in Part C. 

 

Part D. In Part D, the participants faced 18 decision problems. In each, they chose between two 

binary lotteries with known probabilities of loss and gain (as illustrated in Figure 4). The two lotteries 

were “mirror images” of each other (i.e., –x with probability p and +y with probability 1-p vs. –y with 

probability 1-p and +x with probability p), and they had an expected value of 0,  identical variance, 

and identical kurtosis. The departure from the context of a stopping problem, as well as the fact that 

the lotteries had the same expected value and variance, allowed us to test whether some individuals 

have a “pure” taste for skewness. Such preferences may be relevant to the choice of a stopping rule in 

Parts A and B. In each question, the order of appearance of the two lotteries was randomly and 

independently determined. There was no difference between the two treatments in Part D.  

 

At the end of Part A, B and D, the participants were asked to explain the principles that 

guided them in their choices. We analyzed the participants’ explanations in order to acquire a better 

understanding of their reasoning process. 
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Part D – Game 2 

Which of the following two lotteries do you prefer? 

 

a. 

 

 

b. 

 
 

Figure 4. An example of a decision problem in Part D. 

 

Discussion: Choosing from a fixed set of rules 

In each of the decision problems in Parts A and B, the participants chose one out of five stopping 

rules. Alternatively, we could have allowed them to select the stopping rule’s upper and lower bounds 

from an unconstrained set. We decided to constrain their choice so as to focus on the effect of the 

qualitative properties of the stopping rules (e.g., the effect of the fairness of the baseline lotteries, how 

the choices differ given fixed loss/gain, etc.) while keeping the participants’ decision problems 

relatively simple. Moreover, the “constrained” problems differ from one another and thus allow us to 

examine whether participants use rules that share similar properties in a large number of different 

problems. We believe that it would be significantly more difficult to have the participants perceive 

numerous unconstrained problems as differing from one another, especially since the stopping rules’ 

induced probabilities are not specified in our main treatment. 

 

2.2 Theoretical predictions  

Our analysis suggests that individuals solve the tradeoff between prizes and probabilities in a 

consistent manner when they choose a stopping rule. That is, they consistently choose either left-

biased rules, which minimize the loss probability, or right-biased rules, which minimize the size of the 

potential loss and maximize the size of the potential gain. 

We considered several decision procedures to see whether they can explain the findings. To 

obtain some intuition for what they would predict, consider a risk-neutral expected utility maximizer. 

In Part A, where the baseline lotteries are unfair, such a decision maker would minimize the induced 

number of baseline lotteries in which he participates. Thus, in type (i) (type (ii)) problems, where the 

potential loss (gain) is fixed, such a decision maker would choose the most left-biased (right-biased) 

rule. In Part B, where p>0.5, he would exhibit the opposite behavior, namely he would maximize the 

chance 24% 76% 

amount -25 +8 

chance 76% 24% 

amount -8 +25 
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expected number of lotteries in which he participates. In type (iii) problems, the stopping rules’ 

induced expected value is U-shaped in their right-biasedness in Part A and hump-shaped in Part B. 

Modest levels of risk aversion do not change the predictions. For example, a risk averse 

individual with CRRA utility would exhibit the same pattern of choice for any wealth level 𝑤 ∈

{500,600, … ,10000} and risk aversion coefficient 𝜎 ∈ {0,0.1,0.2, … ,2}. A lower wealth level (e.g., 

𝑤 = 55, which reflects a mental accounting procedure, according to which the participants code the 

experiment’s earnings in a separate mental account) induces greater absolute risk aversion in the case 

of CRRA utility and leads to different predictions (mainly) in type (iii) problems.
4
 

In Part C of the experiment, we found that many of the participants estimate the rules’ 

induced winning probabilities as if the baseline lottery is almost fair (i.e., as if p is closer to 0.5 than it 

actually is). To examine whether this type of bias can explain our findings, we compared the 

participants’ choices to those of a risk-averse expected utility maximizer when the baseline lottery’s 

winning probability is 0.5. Due to risk aversion, such an individual would try to minimize the number 

of lotteries in which he participates. Thus, he would choose left-biased rules in type (i) problems and 

right-biased rules in type (ii) problems. The choices of such an individual in type (iii) problems will 

depend on the specific parameters.    

In Section 4, we examine which of the following decision procedures better explains the data: 

1. Consistently solving the prize-probability tradeoff in favor of rules that induce larger/smaller 

winning probabilities. 

2. Expected utility maximization (with modest levels of risk aversion). 

3. Loss aversion with diminishing sensitivity to gains/losses. 

4. Risk aversion with mental accounting. 

5. Risk aversion with distorted beliefs (i.e., estimating the rules’ induced probabilities as if p=0.5). 

 

Procedures 2, 3 and 4 lead to the same prediction in type (i) and type (ii) problems. Type (i) 

problems in Part A and type (ii) problems in Part B distinguish between participants who behave 

according to these procedures and those who consistently solve the prize-probability tradeoff in favor 

of a large prize or a small loss (i.e., right-biasedness). Type (ii) problems in Part A and type (i) 

problems in Part B distinguish between participants who behave according to these procedures and 

those who consistently solve the prize-probability tradeoff in favor of a large winning probability (i.e., 

                                                           
4
 In a similar manner, modest levels of probability distortion (in the spirit of cumulative prospect theory, see 

Kahneman and Tversky, 1992) do not change the prediction by much. 
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left-biasedness). Type (i) and type (ii) problems in Part A distinguish between Procedure 5 and right-

biasedness, and type (i) and type (ii) problems in Part B distinguish between Procedure 5 and left-

biasedness. Type (iii) problems distinguish between the five decision procedures; however, the 

differences are not as sharp as they are in type (i) and type (ii) problems.  

 

3. Choice of stopping rules (Parts A and B) 

We shall now focus on the main treatment, T0, in which the participants were not provided with the 

rules’ induced probabilities. In Section 5.2, we present the results obtained in Tp, in which the rules’ 

induced probabilities were provided, and compare them to the results obtained in T0. 

Recall that in each problem, the participants chose between five stopping rules: two left-

biased rules, one symmetric rule, and two right-biased rules. We refer to the choice of the rule with 

the largest loss and the smallest gain as Answer 1; the second-most left-biased rule as Answer 2; the 

symmetric rule as Answer 3; the rule with the largest gain and smallest loss as Answer 5, and the 

second-most right-biased rule as Answer 4 (though some participants were presented with the reverse 

order). The behavior in T0 provides indications of two general patterns. First, in Part A, where the 

baseline lottery is unfair, there is a strong tendency to choose left-biased stopping rules (i.e., Answers 

1 and 2). Second, in Part B, this tendency is weaker relative to Part A. These patterns are observed at 

the aggregate level, at the individual level, and in all three types of problems. 

 

Aggregate-level analysis 

At the aggregate level, 1206 (67x18) choices were made in each part of the experiment. 66% of the 

chosen rules in Part A were left-biased while only 25% were right-biased. In Part B, 46% of the 

chosen rules were left-biased while only 35% were right-biased (see Table 1).  

 

 

Part A Part B 

Answer 1 31% 23% 

Answer 2 35% 23% 

Answer 3 9% 19% 

Answer 4 10% 19% 

Answer 5 15% 16% 

          Table 1. The distribution of choices in T0 (total of 1206 choices). 
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Individual-level analysis 

We use two measures to examine the participants’ choices at the individual level. The first is the 

number of times each individual chose a left-biased rule, which ranges from 0 to 18 for each part of 

the experiment, and similarly for a right-biased rule. We refer to these measures as the number of left-

biased choices and the number of right-biased choices, respectively. The second type of measure 

attaches a weight of 𝑖 to Answer 𝑖 (in every problem) and sums up these weights such that the 

measure ranges from 18 to 90 for each individual in each part of the experiment. The closer the 

measure is to 18 the greater the participant’s tendency to solve the prize-probability tradeoff in favor 

of left-biased rules and vice versa when the measure is closer to 90. We refer to this measure as the 

total score. 

The number of left-biased choices is higher on average in Part A than in Part B (11.9 vs. 8.3, 

t(66)=4.44, p<0.001). Figure 5a shows that the cumulative distribution of the number of left-biased 

choices per individual in Part A stochastically dominates the corresponding distribution  in Part B. 

The number of right-biased choices is higher on average in Part B than in Part A (6.31 vs. 4.54, 

t(66)=-2.57, p=0.012). Figure 5b shows that the cumulative distribution of the number of right-biased 

choices per individual in Part B stochastically dominates the corresponding distribution in Part A. 

Accordingly, the average total score per individual is higher in Part B than in Part A (50.76 vs. 43.76, 

t(66)=-4.1, p<0.001).  
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Figure 5a. Cumulative distribution of the number of 

left-biased choices per participant: Part A vs. Part B.  

 

Figure 5b. Cumulative distribution of the number of 

right-biased choices per participant: Part A vs. Part B.  
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Note that, despite the significant differences in behavior in Part A and B, the individuals’ 

choices in these two parts are correlated according to the number of left-biased choices measure 

(Pearson’s r=0.56, p<0.001), according to the number of right-biased choices measure (Pearson’s 

r=0.64, p<0.001) and according to the total score measure (Pearson’s r=0.77, p<0.001). Viewed 

together, these findings suggest that an individual has a tendency towards a particular direction (i.e., 

to choose either left-biased rules or right-biased rules). The favorability of the baseline lottery’s odds 

reduces the common tendency towards left-biased rules, presumably because it moderates the focus 

on minimizing the probability of losing.
5
 

Extreme vs. moderate choices. In both Part A and Part B, the difference between the number 

of times the individuals chose Answer 1 and the number of times they chose Answer 2, as well as 

between the number of times they chose Answer 4 and the number of times they chose Answer 5, are 

small and insignificant.  

 

Analysis of the three types of problems 

Examining each of the 36 problems in Parts A and B separately suggests that left-biased choices are 

more prevalent than right-biased ones in all but two of the problems. In Part A, the median choice was 

2 in all of the 18 problems and the average choice was in the range of 2.06-2.87. In Part B, the median 

choice in most problems was 3 (and 2 in the rest) and the average choice was in the range 2.54-3.13. 

The range of the average choice suggests that there are some differences between the problems in the 

extent that left-biased rules were chosen. Therefore, we now examine how the type of problem affects 

the tendency to choose left-biased rules. Table 2 presents this tendency in each of the three types of 

problems in Parts A and B (1-6: fixed loss, 7-12: fixed gain and 13-18: not fixed) and compares it to 

the tendency of choosing right-biased rules.  

The results show that left-biased choices are more common in Part A than in Part B, 

regardless of the type of problem. Furthermore, we find that the tendency toward left-biased choices 

in problems 1-6 of Part A is greater than that in questions 7-12 of Part A (the average number of left-

                                                           

5
 The participants’ explanations provide some indication that in Part B they shift their attention to the potential 

gains rather than the potential losses. For example, keywords were classified into the following categories: 

probability of winning, probability of losing, gain size and loss size. Counting the use of these keyword 

categories in the participants’ explanations suggests that the ratio of the probability of winning to that of losing 

increases in Part B (54:29 in A and 64:14 in B) as does the size of the gain vs. the size of the loss (66:65 in A 

and 54:39 in B).  
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biased choices is 4.4 vs. 3.67, t(66)=2.78, p=0.007), while the opposite pattern is observed in Part B 

(2.58 vs. 3.16, t(66)=-1.95, p=0.055). 

 

 

Part A Part B 

 
fixed loss fixed gain not fixed fixed loss fixed gain not fixed 

Proportion of participants 

choosing left-biased rules 

(range in the 6 questions) 

66%-79% 55%-64% 55%-69% 34%-51% 48%-54% 42%-49% 

Proportion of participants 

choosing at least 5 left-

biased rules (out of 6) 

63% 52% 60% 37% 48% 37% 

Proportion of participants 

choosing at least 5 right-

biased rules (out of 6) 

12% 24% 19% 36% 28% 27% 

Table 2. Each type of problem consists of 6 questions. The first row presents, for each type of problem, the 

maximal and minimal proportion of left-biased choices per question. The second (third) row presents the 

proportion of participants who tend to choose left-biased (right-biased) rules for each type of problem in Part A 

and B of T0. 

 

In Part A, left-biased rules are commonly chosen in the fixed loss problems. Intuitively, since 

the participants cannot control the size of the loss, they focus on minimizing its likelihood. In the 

fixed gain problems, participants can also control the size of the potential loss and there is a tradeoff 

between a higher probability of winning and a smaller potential loss. Thus, a smaller proportion of 

participants chose the left-biased rules. Nonetheless, the majority of participants chose left-biased 

rules in all types of problems.  

In contrast, in Part B, where the odds are on the participants’ side, it seems that the 

participants’ focus shifts towards the potential gain. When participants face the fixed gain problems, 

they focus on maximizing the probability of winning (since they can’t control the size of the gain) by 

choosing left-biased rules. In the fixed loss problems, they can also control the size of the potential 

gain and hence opt for right-biased rules more often. 

 

4. Classification into Types 

We can now classify the participants into types according to their choices. A participant is type L if he 

consistently chooses left-biased rules and type R if he consistently chooses right-biased rules. We now 
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present two definitions according to which we will classify the participants (although the results under 

both are very similar). In order to account for the possibility that individuals solve the prize-

probability tradeoff in a different manner when the favorability of the baseline lottery changes, we 

classify the participants into types according to their choices in Part A (18 choices), their choices in 

Part B (18 choices), and their choices in Parts A and B together (36 choices).
6
 

 

4.1 Two definitions of type  

 

Definition 1: The number of left-/right-biased choices  

For Part A and Part B separately, a participant is defined as type L (R) if he chooses a left-biased 

(right-biased) rule in 13 or more out of 18 problems.
7
 Participants who are neither L nor R are referred 

to as “other”. If a participant chooses rules randomly, the probability of being classified as one of the 

two types is roughly 0.012 (i.e., 0.006 for each type). Consistent with these probabilities, when 

examining the choices in Part A and B together, we classify a participant as an L type (R type) if he 

chooses left-biased rules (right-biased rules) in at least 22 out of 36 problems.  

Figure 6 and 7 show the experimental distribution of the number of left-biased and right-

biased choices (per participant) in Parts A and B, compared to the probability of such realizations 

given a random choice. Figure 8 displays these distributions for Parts A and B combined. 

 

Definition 2: The total score  

In each of Part A and Part B, a participant is classified as an L type if the sum of his answers is in the 

range [18,40], an R-type if it is in the range [68,90], and “other” if it is in the range [41,67]. If a 

participant chooses randomly, the probability of the sum being in the low (high) range is roughly 0.01. 

Combining Part A and B, a participant is classified as an R-type if his total score is in the range 

[36,88] and as an L type if his total score is in the range [128,180]. The probability of being classified 

as each of these types for a participant that chooses uniformly at random is roughly 0.01. 

 

 

 

                                                           
6
 In Appendix A, we provide an alternative definition of types which identifies participants that are relatively 

extreme in their choices and report the proportions of such types in our experiment. 
7
 This definition is in the spirit of Ebert and Wiesen (2011)’s concept of skewness-seeking. 
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Figure 6. The distribution of participants according to their number of left-biased choices in Part A and B 

and the probability of each number of choices given random uniform choice in each problem. 

 

 

 

 

Figure 7. The distribution of participants according to their  number of right-biased choices in Part A and B 

and the probability of each number of choices given random uniform choice in each problem.  
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Figure 8. The distribution of participants according to their number of right-biased and left-biased choices 

in Part A and B combined and the probability of each number of choices given random uniform choice in 

each problem.  
 

Comment: Internal consistency 

The answers to the 18 problems in each part are highly correlated. Cronbach’s alpha is 0.95 in Part A 

and 0.96 in Part B. We further examined the in-sample predictive power of our classification (in each 

part separately) according to each of the above definitions and concluded that it is possible to use the 

choices in each subset of 17 problems to classify the participants into the three groups: L, R and 

Other, and to predict their choices in the 18
th
 problem based on that classification (in the spirit of the 

typology test suggested in Rubinstein (2016); see Figures S1-S4 in Appendix A). 

 

4.2 Proportion of types  

Table 3 presents the proportion of types in T0, according to Definitions 1 and 2. In both Part A and 

Part B, the types account for a majority of the participants (62%-72%). The proportion of L types in 

Part A is higher than in Part B whereas the proportion of R types is lower than in Part B (according to 

a McNemar test, p=0.023 and p=0.039, respectively). Nonetheless, a participant’s type in Part A is 

correlated with his type in Part B (Spearman’s rho =0.5, p<0.001). In particular, a type L in Part A is 
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unlikely (only 13%) to be classified as type R in Part B and vice versa for type R in Part A (none of 

the R types were classified as type L in Part B); some types switch to “other” in Part B. Considering 

all of the 36 choices together, we classified 47.7% of the participants as L types and 19.5% as R types 

according to Definition 1. According to Definition 2, 49.2% of the participants were classified as L 

types and 17.9% as R-types. Thus, according to each of the six methods of classification, about 2/3 of 

the participants are classified as types, with the majority of them classified as L types. 

 

 
 

Types in Part A Types in Part B 

 
 

L R L R 

T0  

N=67 

Number of 

choices 
57% (38) 13% (9) 39% (26) 24% (16) 

Total score 57% (38) 15% (10) 37% (25) 25% (17) 

     Table 3: The proportions of types in Part A and B in T0, according to Definitions 1 and 2. 

 

Consistency with the participants’ explanations 

At the end of each part, the participants were asked (i) how they would instruct someone else to play 

on their behalf and (ii) to describe their main considerations in making their choices. To support our 

interpretation of the type L and type R decision procedure, two research assistants examined whether 

the explanations fit our identification of types (by Definition 1) using the following protocol: Each 

assistant separately examined the explanations and classified them into four categories: (1) Explicit – 

the explanation included an explicit description of choosing (consistently) right- or left-biased 

stopping rules; (2) Partial – the explanation included the description of a general rule of right or left 

bias but mentioned exceptions in which the tradeoff was resolved differently; (3) Inconsistent – the 

explanation contradicted the type identification; and (4) NA – the text did not provide enough 

information to determine whether the participant’s identification is consistent with the reasoning he 

describes. Following that, the assistants discussed with each other the cases in which their 

classifications disagreed (it turned out that their classifications were almost always in agreement).   

In only a small number of cases did the assistants’ final classification indicate that 

participants described a decision procedure that was different from the type that had been assigned to 

them. In fact, the vast majority of participants included an explicit description of right or left 

tendency. In particular, in Part A, the explanation of only one of the 69 participants who were 



 
20 

classified as types (in the two treatments combined) was inconsistent with his type classification. In 

addition, the explanations of 6 of those 69 participants were classified as NA. Similarly, in Part B, the 

explanations of two of the 63 participants who were classified as types were inconsistent with their 

type classification. The explanations of 8 of those 63 participants were classified as NA.    

The following are examples of participants’ explanations in T0 in each of the four categories:  

Participant 57, Part A (type L) – Explicit: In each problem, I chose the option in which the loss is 

larger than the gain so that the chances of achieving a gain would be greater. Nevertheless, I chose 

the option in which the gap between the loss and the gain is not relatively large. For example, a gain 

of 6 and a loss of 15. 

Participant 45, Part A (type L) – Partial: The probability that you win increases if the negative 

stopping rule is high and the positive stopping rule is low… you need to play safe but not too safe… 

because there are cases in which the conditions do not pay off. 

Participant 89, Part A (type L) – Inconsistent: Trying to obtain maximal gain given that a loss is most 

likely, even if it means risking a loss. 

Participant 4, Part A (type L) – NA: Choose according to the probability of winning relative to the 

probability of losing. 

Participant 54, Part B, (type L) – Explicit: The instructions are almost identical (to Part A). The 

chance of winning is a bit higher than in the previous part and hence I took a chance, such that the 

stopping rules of the gain and of the loss are more similar but still the loss is further away from 0 in 

order to increase the chance of winning.  

Participant 65, Part B, (type R) – Explicit: The instructions are similar to those of Part A, but just the 

opposite since the probability of winning is higher. Thus, I looked for the smallest bias towards the 

“plus”. 

In conclusion, many of the participants’ explanations focused on a qualitative resolution of 

the tradeoff between the probability of a gain/loss and the size of the potential gain/loss. Most of the 

participants who were classified as types (either L or R) explicitly explained their decision as 

consistently choosing what we refer to as left/right-biased stopping rules.  
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4.3 Alternative (theory-based) explanations 

 

4.3.1 Explaining the behavior in T0: A horse race 

It is worthwhile considering whether the participants’ choices can be explained by any of the theories 

described in Section 2.2. We start by classifying the participants into types according to each of these 

theories. For each theory and each problem, we sort the five rules according to the value that they 

induce according to the theory and define a participant’s choice as consistent with the theory if it 

matches one of the top two rules. We classify a participant as a type in Part A (and similarly in Part B) 

according to a particular theory if his choices are consistent with that theory in at least 12 of the 18 

problems (if a participant chooses uniformly at random, the probability of observing such a pattern is 

about 2%, which is slightly larger than the combined probability of being classified as an R type or an 

L type
 
according to Definition 1). As a benchmark, recall that 47 of the 67 participants were classified 

as an L or R type in Part A and 42 participants were classified as an L or R type in Part B. 

We found that the choices of only a small number of participants matched those predicted by 

expected utility theory under risk neutrality or modest levels of risk aversion (as described in Section 

2.2). Only 14 (13) participants made choices that are consistent with this theory in Part A (B). Loss 

aversion with a piece-wise linear value function and a loss aversion coefficient of λ<3 leads to a 

similar outcome. Loss aversion with diminishing sensitivity leads to a slightly better match. For 

example, for λ=2.2 and a diminishing sensitivity parameter of 𝛼 = 0.83, the theory produces a match 

for 14 (23) participants in Part A (B).
8
  

We also examined a mental accounting procedure, in which the participants code their 

earnings in the experiment into a separate account. To capture this, we considered log-utility 

maximization with an initial endowment of 55 NIS (the number of participants who are classified is 

not very sensitive to changes in the level of risk aversion). We found that the behavior of 15 (13) 

participants in Part A (Part B) matches this explanation.  We also considered a theory according to 

which the participants treat the baseline lottery as if its winning probability is 0.5. With logarithmic 

utility and an initial endowment of 55 NIS this theory explains the behavior of 17 (9) participants in 

Part A (Part B).
9
 

                                                           
8
 The number of matches is not very sensitive to the parameters, which were chosen based on the calibration 

exercise in Kahneman and Tversky (1992). 
9
 As explained in Section 2.2, the predictions in problems of types (i) and (ii) do not depend on the level of risk 

aversion and therefore the classification is not very sensitive to the specific utility function/endowment. 
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If we consider all 36 problems together, the cutoff for classification is 21 matches such that 

the probability of being randomly classified as a type is roughly 2%. In this case, we were able to 

classify 17 of the participants as loss averse types and no more than 12 participants for each of the 

other theories. In comparison, 33 of the participants were classified as L types and 12 as R types.  

In conclusion, the alternative theories cannot explain the behavior of most of the participants. 

It is still nonetheless possible that some of the theories explain the behavior of some of the 

participants that were classified as R or L types. Therefore, we now modify our initial classification 

by eliminating participants whose behavior is better explained by one of the alternative theories. 

 

4.3.2 A more conservative classification 

In this subsection, we consider the participants who were classified as R types or L types according to 

the number of times they chose a left- (right-) biased rule, and examine whether their behavior can be 

explained by one of the alternative theories. We change a participant’s classification (from L or R) to 

other if his behavior is better explained by one of the alternative theories or if left-/right-biasedness is 

only slightly better in explaining his behavior than an alternative theory. In particular, if a participant 

is classified according to an alternative theory and the number of matches according to this alternative 

theory is lower by 2 or less than the number of matches to his initial type classification (L or R), then 

we modified his initial classification to other.
10

  

The conservative classification results are as follows: in Part A, 37 (out of 38) participants 

remained  L and 7 (out of 9) remained R; in Part B, 24 participants (out of 26) remained L and 16 

participants (out of 16) remained R. Classifying types based on their combined behavior in Parts A 

and B, 30 participants (out of 33) remained L and 10 participants (out of 12) remained R. Thus, even a 

more conservative approach does not change the classification all that much.  

 

5. The effects of probability (mis-)estimation  

In this section, we examine to what extent the choices of the participants in the main treatment were 

affected by the fact that they were not provided with the rules’ induced winning probabilities. Not 

knowing the induced probabilities should not have any effect if the participants can infer them from 

the likelihood of winning a single baseline lottery. Therefore, the first step of the analysis must be to 

examine the participants’ ability to make such an inference. Part C of the experiment explores this 

                                                           
10

 Changing the criterion to a gap of 4 would not make much difference; only one participant’s classification 

would change. 
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question and establishes that the participants’ inferences are in fact quite different from the true 

winning probabilities (which is consistent with the finding that individuals typically fail to reduce 

compound lotteries; see, e.g., Halevy, 2007). In the second part of this section, we present the results 

of a second treatment in which the induced probabilities were explicitly given to the participants in 

Parts A and B. Analyzing the behavior of these participants sheds light on the effects of the unknown 

probabilities on the participants’ behavior.    

 

5.1 Are the participants able to infer the rules’ induced probabilities? (Part C) 

In each of the three problems in Part C, the participants faced a single stopping rule. The rules were (-

25,+25), (-25,+50), and (-25,+100) in the first, second, and third problem, respectively. The 

participants were asked to assess the rules’ induced winning probabilities given that the probability of 

winning a single baseline lottery is 18/37, as in Part A. The correct induced winning probabilities are 

20.6%, 5.1%, and 0.3%, respectively. 

The participants’ average estimates in T0 were 39.7%, 24.2%, and 17.2%. The expected errors 

in absolute terms were 22.9%, 14.1%, and 17.9%. Moreover, only 26.8% of the answers were within a 

range of 5% from the correct answer.
11

 While most of the participants failed to estimate the winning 

probabilities correctly, they did exhibit a qualitative understanding of the prize-probability tradeoff, 

such that 86.8% of them provided monotonic estimates (an estimate is monotonic if the estimate for (-

25,+25) is weakly greater than the estimate for (-25,+50) and the latter is weakly greater than the 

estimate for (-25,+100)). 

These results indicate that the vast majority of the participants overestimate the likelihood of 

finishing the game at a gain when the baseline lottery is only slightly unfair.
12

 Such overestimation 

can lead to overconfidence and excessive gambling, since casinos and online gambling websites 

typically offer unfair baseline gambles which resemble the baseline lotteries in our experiment (e.g., 

the winning probability in single Blackjack and a Red or Black roulette game is close to 0.5).    

After establishing that the vast majority of participants failed to estimate the induced winning 

probability, we turn to investigate a treatment in which the participants were provided with the rules’ 

                                                           
11

 In Tp, where the participants knew the probabilities of the stopping rules in Part A and B, the average 

estimates in Part C were:  36.8%, 22.8%, and 12.4%, and the average error size was reduced somewhat in all 

three questions, though the reduction was marginally significant only in the first problem (error difference=3.83, 

t(112)=1.89, p=0.062). Only 29.8% of the answers in Tp were within a range of 5% from the correct answer. 
12

 While it is unclear whether this overestimation bias persists when the baseline lotteries’ expected value is far 

from zero, this question is out of the present paper’s scope and we leave it for future research. 
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induced probabilities in Part A and B and compare their  behavior to that observed in the main 

treatment. 

 

5.2 Known vs. missing induced probabilities (Tp vs. T0) 

We begin with a description of the behavior in Tp, in which the participants were provided with the 

stopping rules’ induced probabilities of winning and losing.  Following that, we will compare the two 

treatments.  

At the aggregate level, the behavior patterns exhibited by the Tp participants are similar to 

those observed in T0. Thus, when the baseline lottery is unfair, there is a tendency to prefer left-biased 

stopping rules to right-biased ones. Second, this tendency is weaker when p>0.5. We found that in 

Part A, left-biased rules were chosen in 62% of the 846 (47x18) choices and right-biased rules in 

28%, whereas in Part B the figures were 49% and 37%, respectively. It should be noted that the 

number of left-biased choices in Part A is greater than in Part B and the number of right-biased 

choices in Part A is smaller than in Part B (see Table 4).  

 

 

Part A Part B 

Answer 1 44% 32% 

Answer 2 18% 17% 

Answer 3 11% 15% 

Answer 4 10% 13% 

Answer 5 18% 24% 

           Table 4. The distribution of choices in Tp (total of 846 choices). 

 

At the individual level, the mean number of choices of left-biased rules in Part A was higher 

than in Part B (11.09 vs. 8.74, t(46)=2.96, p=0.005). Similarly, the total score, which could potentially 

range from 18 to 90, is higher in Part B than in Part A (on average, 50.40 vs. 43.23, t(46)=-2.86, 

p=0.005). Nonetheless, the participants’ choices in Part A and Part B are correlated according to the 

number of left-biased choices measure (Pearson’s r=0.62, p<0.001) and according to the total score 

measure (Pearson’s r=0.61, p<0.001).   

Extreme vs. moderate choices. In contrast to T0, the differences between the number of 

choices in the same direction (i.e., Answer 1 vs. Answer 2 and Answer 5 vs. Answer 4) are 
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significant. In particular, participants tended to choose the extreme stopping rules more often. Thus, 

Answer 1 was chosen more than Answer 2 (in Part A the difference is 4.7, t(46)=4.14, p<0.001, 

whereas in Part B the difference is 2.7, t(46)=2.97, p=0.005) and Answer 5 was chosen more than 

Answer 4 (in Part A the difference is 1.49, t(46)=-2.13, p=0.039, whereas in Part B the difference is 

1.96, t(46)=-2.99, p=0.005). Thus, the uncertainty regarding the induced lotteries in T0 mitigated the 

individuals’ extreme choices. 

Table 5 presents two measures of the participants’ tendency to choose left-biased rules in 

each of the three types of problems and compares it to the corresponding tendency to choose right-

biased rules. The results suggest that left-biased choices are common in Tp as well. Furthermore, we 

observed a “mirror” pattern similar to that observed in T0, such that the tendency of left-biased 

choices in fixed-loss problems is greater than in fixed-gain problems in Part A (the average number of 

left-biased choices is 4.87 vs. 3.02, t(46)=4.8, p<0.001), while the reverse pattern is observed in Part 

B (1.96 vs. 3.94, t(46)=-5.09, p<0.001). 

 

 

Part A Part B 

 
fixed loss fixed gain not fixed fixed loss fixed gain not fixed 

Proportion of participants 

choosing left-biased rules 

(range in the 6 questions) 

68%-87% 43%-57% 47%-55% 23%-45% 57%-75% 40%-57% 

Proportion of participants 

choosing at least 5 left-

biased rules (out of 6) 

77% 40% 45% 23% 64% 38% 

Proportion of participants 

choosing at least 5 right-

biased rules (out of 6) 

2% 26% 23% 47% 15% 15% 

Table 5: Each type of problem consists of 6 questions. The first row presents, for each type of problem, the 

maximal and minimal proportion of left-biased choices per question. The second (third) row presents the 

proportion of participants who tend to choose left-biased (right-biased) rules for each type of problem in Part A 

and B of Tp. 

 

The above observations suggest that the patterns of behavior in Tp were similar to those in T0. 

A comparison of the two treatments indicates that neither of the two measures (number of left-biased 

choices and total score) differs significantly between the treatments. Furthermore, there are no 
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significant differences between the treatments in the number of left-biased choices for any of the six 

types of questions.
13

  

Type Classification.  In both parts, the proportion of participants classified as types is slightly 

higher in T0 than in Tp (the differences are highly significant when using the conservative measure 

and significant at the 10% level when using the two other definitions).  Nevertheless, resolving the 

prize-probability tradeoff in a consistent manner in terms of right-/left-biased rules appears to explain 

the behavior in Tp better than the alternative theories discussed in Section 2.2. Of those theories, loss 

aversion with diminishing sensitivity to gains/losses best explains the participants’ behavior (the 

complete analysis appears in Appendix A).  

In sum, although the behavior in Tp is not identical to that in T0, the observed patterns are 

quite similar. Thus, knowing the stopping rules’ induced probabilities had only a minor effect on the 

participants’ behavior.  

 

6. Pure preference for skewness 

Our notion of biasedness corresponds to the skewness of the stopping rules’ induced lotteries, i.e. the 

more right-biased a rule is, the greater is the skewness of its induced lottery.
14

 Thus, a pure taste for 

positively or negatively skewed prospects might affect a participant’s preferences over stopping rules. 

In Part D, we examined whether the participants have such a taste for either positive or negative 

skewness.  

The participants were presented with 18 problems in which they chose between a pair of 

binary lotteries. In each pair, the two lotteries had an expected value of 0, the same variance, and the 

same kurtosis. The key difference between each pair of lotteries was that one was positively skewed 

and the other was negatively skewed. The prizes were chosen such that (given a baseline winning 

probability p=0.5) the positively skewed lottery could be induced by a right-biased rule and the 

negatively skewed lottery by a left-biased rule.  The participants’ decisions in this part of the 

experiment are simpler than those in Part A and B in two main dimensions: the winning probabilities 

are given and the lotteries are not presented as stopping rules.  

                                                           
13

 The only significant difference in behavior between the treatments is the abovementioned tendency to choose 

more extreme stopping rules (i.e., choices 1 and 5 are more common than 2 and 4). This decreases the sum of 

choices in problems 1-6 (fixed loss) of Part A and problems 7-12 (fixed gain) of Part B and increases the sum of 

choices in problems 1-6 (fixed loss) of Part B (see Table S1 in Appendix A). 
14

 It should be noted that a left-biased rule may induce a positively skewed lottery when p<0.5 and a right-biased 

rule may induce a negatively skewed lottery when p>0.5. 



 
27 

On an aggregate level, 49% of the choices in Part D were of negatively skewed lotteries. In 

almost all of the 18 problems, the distribution of choices was relatively balanced, i.e. between 40% 

and 60% choices of negatively skewed lotteries, where the highest proportion was 71% (which 

occurred in the first problem in Part D). On an individual level, the number of choices of negatively 

skewed lotteries (which could potentially range from 0 to 18) is, on average, 8.75 with a median of 8. 

Among the 114 participants in the two treatments, we could classify 31% of the participants as L 

types and 38% as R types using Definition 1. Despite the slightly different choice pattern, there is a 

significant correlation between the individuals’ total score in Part D and their total score in Part A and 

B of T0 (Pearson’s r=0.27, p=0.025 and Pearson’s r=0.35, p=0.003, respectively).
15

 The behavior in 

Part D is also correlated with the number of left- and right-biased choices in Part A and B .    

In conclusion, at the aggregate level, the participants did not exhibit a taste for negatively 

skewed prospects to an extent that could explain the general tendency to choose left-biased rules in 

Parts A and B. Nonetheless, the significant correlation suggests that pure preference for negative or 

positive skewness is related to the individual tendency to choose left- or right-biased stopping rules.  

 

Comment: the literature on skewness-seeking and prudence 

The literature on skewness-seeking and prudence documents a taste for positively skewed lotteries. 

The results in Part D are closer to those in that strand of the literature than the results in Part A and B. 

Nonetheless, the proportion of positively skewed choices is still lower than in the literature. The lower 

proportion of positively skewed choices may be the result of the different type of lotteries we used 

(i.e., the two lotteries were mirror images of each other which perhaps emphasized the direction-bias) 

and an order effect (Part D was played last). 

 

7. Concluding remarks 

The contribution of the present paper is threefold. First, we examined individuals’ preferences over 

stopping rules when they have commitment power, such that they can express their true preferences. 

Second, we found that individuals tend to trade off between the size of the prizes and the winning 

probability in a consistent manner - in favor of either right-biased stopping rules or left-biased 

stopping rules. The participants’ choice patterns depend on the favorability of the baseline lottery and 

                                                           
15

 The total score in Part D is calculated as follows: each choice of positively (negatively) skewed lottery is 

translated to 2 points (1 point). The choices in Part D are correlated with those in Part A and B in Tp as well 

(Pearson’s r=0.49, p<0.001 and Pearson’s r=0.43, p=0.003, respectively). 
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cannot be explained by leading theories of decision under risk. In fact, the consistency of the 

participants’ choices enabled us to classify two-thirds of them into types according to the way they 

trade off between prizes and winning probabilities. Finally, we found a significant tendency to choose 

stopping rules that induce a relatively large winning probability even at the cost of a large downside 

risk, at both the aggregate and individual levels.  

The prize-probability tradeoff appears in various real-world decision problems. For example, 

consider a job-seeker who chooses whether to prepare for a job-interview for position A or to prepare 

for a job-interview for position B. Suppose that position A entails a greater compensation/status than 

position B such that the competition for position A is more intense and, as a result, the job-seeker’s 

chances of converting the interview to a job-offer are lower. While the downside (not getting a job 

despite the effort exerted in preparing for the interview) is fixed, the job-seeker has to settle the 

tradeoff between the higher conversion chance at the interview for position B with the higher reward 

offered at position A. Our results suggest that in such contexts, where it is difficult to evaluate the 

exact probabilities, individuals tend to settle the tradeoff qualitatively and consistently either in favor 

of the probability of success or in favor of the rewards. 

The results of Part C establish that almost none of the participants estimated the stopping 

rules’ induced probabilities correctly. The participants’ estimates in Part C corresponded to a 

probability of winning a single baseline lottery p that is closer to 0.5 than it really was. For example, 

in the first problem of Part C, the participants had to estimate the likelihood of finishing the game 

with a gain when the baseline lottery’s winning probability is 18/37 and the stopping rule is (-25,+25). 

While the rule’s induced winning probability is roughly 0.205, over 85% of the participants in the 

main treatment overestimated this probability, with 50% of the participants estimating that it is in the 

range of 0.45-0.5 and 69.9% estimating that it is in the range of 0.4-0.5.  

A possible interpretation that is consistent with this overestimation is that the participants did 

not take into account the fact that small differences in p lead to large differences in the rule’s induced 

probabilities.  In particular, the fact that the baseline lottery’s winning odds are close to 0.5 does not 

imply that the rule’s induced lottery is close to being fair. This pattern may have significant 

implications for situations in which processes are perceived to be “almost fair”. Thus, it could lead to 

over-optimism and over-participation in situations where the baseline drift is slightly negative (e.g., 

casino gambling) and over-pessimism and under-participation in situations where it is slightly positive 

(e.g., stock market trading).   
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