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Abstract. Two players sequentially and privately examine a project

of unknown quality. Launching the project requires mutual consent and

the first player values the project more than the second player does.

The combination of the conflict of interest and private learning leads

to moral hazard. We show that an efficient equilibrium must take one

of two forms as a function of the prior: either one player relinquishes

control of the project, thereby rendering the collaboration moot, or

the first player occasionally makes false claims about achieving posi-

tive findings. In the latter case, the players’ relevant beliefs diverge as

time progresses. In addition, we show that projects for which an initial

examination failed to generate positive findings may be launched, and

that projects known to be good by the first player may be delayed or

even aborted.

1. Introduction

Modern economic interactions involve collaboration between agents with

complementary skills. For instance, launching a new product may require
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raising new capital, followed by research and development, and a market-

ing campaign; hiring a new employee may include an examination by the

initiating division and final authorization by upper management; and stan-

dardization processes such as drug approval begin with private testing by

the pharmaceutical company, followed by FDA scrutiny.

Typically, the agents involved in the collaboration act sequentially and have

idiosyncratic goals and exposure to market forces. Moreover, as agents have

different areas of expertise, it is difficult for them to share hard evidence

about their findings. The combination of multiple players with different

preferences who operate sequentially and the difficulty of providing hard

evidence result in a moral hazard problem. Moreover, the absence of di-

rect contractual relationships between these players exacerbates the moral

hazard problem.

In this paper, we develop a model that incorporates these natural features,

to better understand the implications of this moral hazard problem. We

study how the players’ characteristics determine both the manner in which

they collaborate and the efficiency of the collaboration process.

In our model, two players, F and S, jointly decide whether to launch a

project whose quality can be either good or bad. First, F examines the

project and decides whether to abort it or pass it to S, who, upon receiving

it, can also examine the project and decide whether to launch it or abort it.

Each player can use a costly learning technology that produces conclusive

evidence of the project’s quality (breakthroughs) according to a Poisson

process only if the project’s quality is good. We assume that the outcome

of the learning process is private and that F values a good project more

than S does. Thus, F may have an incentive to pass the project as if a

breakthrough occurred.

We show that in any equilibrium in pure strategies, at most one player

examines the project. When the prior belief that the project is good (the
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prior) is low, S prefers to abort the project instead of examining it. When

the prior is high F is too eager to launch the project and thus cannot

be trusted to report his findings honestly. For intermediate priors, S is

unwilling to examine the project and F cannot be trusted to do so. Hence,

with intermediate priors, even though both players find aborting the project

inferior to F examining it, the project is aborted without examination.

For these intermediate priors, in the unique Pareto-efficient equilibrium

F randomizes between passing the project as if a breakthrough occurred

and continuing to learn. As F occasionally fakes breakthroughs, when S

receives the project he is skeptical about its quality and he may examine

the project too. After some time in which F randomizes, she becomes less

eager to launch the project and passes the project only if she observes a

breakthrough. We refer to the moment at which F stops “faking” break-

throughs as τ ∗. If S receives the project after τ ∗, he infers that the project

is good and launches it immediately.

The interaction prior to τ ∗ consists of two distinct phases: an earlier veri-

fication phase and a later partial trust phase.1 In the verification phase, if

S receives the project he launches it only after examining it and observing

a breakthrough. As time progresses, S gradually increases the amount of

time he will devote to examining the project should he receive it. In the

partial trust phase, if S receives the project he randomizes between im-

mediately launching it and further examining it. As time progresses, he

breaks his indifference in a way that is more favorable to F.

Since S does not have commitment power, the amount of time he spends

learning depends on his belief about the quality of the project. The higher

his belief, the longer he will learn. Therefore, to sustain S’s equilibrium

behavior, S’s belief conditional on receiving the project cannot decrease

1For some parameters, only one of the two phases exists. We provide necessary and
sufficient conditions for this in the formal analysis.
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over time. As S’s belief depends on F’s behavior, the frequency with which

F fakes breakthroughs must decrease over time.
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Figure 1. Evolution of the players’ relevant beliefs in the mixing range.

Figure 1 illustrates the evolution of the likelihood ratios of the players’

relevant beliefs in the mixing range of the equilibrium: F’s belief while

examining the project without observing a breakthrough and S’s belief

conditional on receiving the project. In the mixing range, these beliefs

diverge. On the one hand, F’s belief about the project’s quality decreases

(“no news is bad news”). On the other hand, S’s belief conditional on

receiving the project increases over time during the verification phase and

remains constant in the partial trust phase. If S receives the project after

time τ ∗ he infers that F has observed a breakthrough and his belief jumps

to 1.

When F fakes breakthroughs, two types of inefficiencies may arise. In

the verification phase, the project is launched only if S observes a break-

through. This leads to delay and, if F observes a breakthrough but S does
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not, to abortion of a project that is known to be good. In the partial trust

phase, S randomizes as well, which leads to approval of bad projects even

when F examined the project and did not observe a breakthrough.

The rest of the paper is organized as follows. Section 2 covers the related

literature and Section 3 presents the model. Section 4 lays the groundwork

for the analysis by studying the single decision-maker’s problem. In Section

5 we present the analysis of pure strategy equilibria while in Section 6 we

present our main results on the existence, characterization, and efficiency

of mixed strategy equilibria. Section 7 concludes. All proofs are relegated

to the Appendix.

2. Literature Review

We study sequential learning when both players’ consent is required to

launch a project. The learning technology in our model is inspired by the

exponential bandits framework (Keller, Rady, and Cripps (2005)), which

the strategic experimentation literature uses to examine free-riding issues

that arise in the presence of informational externalities.2 In models of

experimentation players obtain a stream of payoffs while they learn. In

our model, to capitalize on their information, agents must terminate the

learning process. As a result, optimistic players prefer to launch the project

instead of collecting information.

Rosenberg, Solan, and Vieille (2007) and Murto and Välimäki (2011) study

the effect of private information on learning and free riding. The main tech-

nical question in these papers, and in our model, is how beliefs evolve and

whether they diverge or not. Our paper also studies exit decisions but, un-

like in these papers, the main force behind our results is the combination of

the private nature of the first mover’s findings together with the sequential

2Décamps and Mariotti (2004) and Bonatti and Hörner (2011) introduce direct exter-
nalities into the players’ payoffs.
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interaction. The combination of these assumptions induces a moral hazard

problem absent from the learning literature.

Sequentiality is important when a project’s completion requires multiple

stages. Green and Taylor (2016) study a principal-agent problem where in-

termediate success is unobservable and the principal provides funds based

on reports. Moroni (2017) investigates incentives in teams in a two-stage

project where effort is unobservable. Our model differs from these models

in two main aspects. First, in their models the principal must design incen-

tives for a specialized agent to learn. By contrast, we assume that no player

can commit to a particular incentive scheme. Second, in their models the

same agent (team) must complete two independent tasks that arrive se-

quentially. By contrast, we assume that different players work sequentially

on the same task.

In our model, randomization enables the first player to partially trans-

mit information in a credible manner, which induces the second player to

collaborate.3 Similar effects appear in other models using the exponential

bandit framework but for different reasons. In Campbell, Ederer, and Spin-

newijn (2014), a player who observes a breakthrough wishes to conceal it

to incentivize the other player to keep on exerting effort as breakthroughs

have decreasing returns. In Guo and Roesler (2016) and Dong (2018), a

player who obtains a negative signal about the project wishes to conceal

it to induce the other player to experiment. In all of these papers conceal-

ing bad information encourages (Dong (2018)) the other player to keep on

exerting effort but this information can only be concealed if the informed

player randomizes.4 In our model, any new generated information must be

3In Kremer, Mansour, and Perry (2014) and Che and Horner (2018), the principal
manages the information agents receive in order to induce the agents to acquire socially
valuable information by experimenting. In contrast to our work, in these papers credible
information transmission is sustained by the principal’s commitment power.
4This is reminiscent of the “leading by example” effect in Hermalin (1998) and Komai,
Stegeman, and Hermalin (2007).
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disclosed by assumption, which effectively rules out any signalling motives

or the possibility of extracting informational rents.

Finally, our paper is related to Bayesian persuasion models where the re-

ceiver has access to private information. In our paper, both the “sender”

and the “receiver” have access to costly information. Kolotilin, Mylovanov,

Zapechelnyuk, and Li (2017) assume that the receiver’s information is ex-

ogenous while Matyskova (2018) assumes that the receiver’s information is

endogenous and costly. Kolotilin, Mylovanov, Zapechelnyuk, and Li (2017)

find conditions for equivalence between mechanisms that condition on the

receiver’s information and those that do not, and Matyskova (2018) shows

that there is no loss of generality in restricting attention to mechanisms

in which the receiver does not collect information on the equilibrium path.

The receiver’s ability to endogenously generate private rents reduces the

sender’s payoff and may even reduce the receiver’s payoff. In contrast to

these papers, we assume that the available signals are restricted and that

the receiver does not observe the sender’s choice of information structure.

We find that on the equilibrium path the receiver collects information and

this information is privately and socially valuable.

3. The Model

Two players, F (she) and S (he), jointly decide whether or not to launch

a project whose quality is either good or bad. They agree that the project

should be launched if and only if it is of good quality and they share a

common prior belief that the project is good, which we denote by q0. If

a good project is launched, each player i obtains a payoff of vi, where

vF > vS > 0. Their payoffs from aborting the project are 0, and we

normalize each player’s payoff from launching a bad project to −1.

Before making the decision, each player can privately examine the project.

We assume that the players interact sequentially. The first mover, F, ex-

amines the project first and then decides whether to abort the project or
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pass it to the second mover, S. Upon receiving the project, S examines it

and, in turn, decides whether or not to launch it.

We assume that time is continuous and that both players discount the fu-

ture using a common discount factor of r > 0.5 While a player is examining

the project s/he incurs a flow cost of c > 0 and breakthroughs occur ac-

cording to a Poisson process with intensity λ > 0 if the project is good

and do not occur if the project is bad. Thus, a breakthrough reveals the

quality of the project.

The moral hazard problem in our paper is a result of the combination of

sequential private learning and the difference in players’ payoffs. In some

applications players may be heterogeneous in many aspects. In particular,

they may have access to different learning technologies (λ, c) or have differ-

ent discount factors (r). As will become clear later, our analysis depends

on when and how much players learn. Since any changes in learning de-

cisions can be obtained by changes in players’ payoffs, whether or not the

players are symmetric in other dimensions has no substantive impact on

our results. In order to highlight the strategic trade-offs that arise in our

model, we assume that the only heterogeneity is vF > vS.

3.1. Strategies and Equilibrium. Formally, F chooses a (potentially

stochastic) stopping time τF and, at τF, she decides whether to abort the

project or pass it to S. We assume that if a breakthrough occurs prior to τF,

F’s learning terminates and she passes the project to S immediately.6 Since

learning is private, when S receives the project he does not know whether

F observed a breakthrough or not. Thus, his actions can depend only on

the time at which he received the project. Without loss of generality, we

restrict S’s strategies to those of the following form: with probability σt

he chooses to learn until some stopping time τSt ≥ t, and with probability

5Our results remain valid if r = 0.
6This assumption abstracts away from signalling motives that emerge if F can hold onto
the project after a breakthrough.
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1 − σt he launches the project immediately. If S chooses to learn, and

observes a breakthrough, he launches the project immediately; otherwise,

at τSt , he aborts the project.7

We denote the CDF that corresponds to F’s stopping strategy τ by GF(τ)

and denote by GS
t (τ) the CDF that corresponds to S’s stopping strategy

when receiving the project at t. We refer to a stopping time and its CDF

interchangeably. Since F’s learning is private, in equilibrium, S updates

his belief based on F’s strategy. To ensure that S’s equilibrium belief is

well defined at all points in time we impose the following restriction on F’s

strategy.

Assumption 1. GF is continuously differentiable at all but a finite number

of points.

Note that this assumption does not rule out strategies under which F sub-

mits the project with positive probability at some (finitely many) points in

time (i.e., atoms).8

We denote the density function of GF (whenever it exists) by g(·) and the

supremum of its support by ω(GF(·)) = inf
{
t : GF(t) = 1

}
. With a slight

abuse of notation, we denote this supremum simply by ω. We say that F

reports honestly in the interval L if g(t) = 0, ∀t ∈ L. It follows that F does

not report honestly at t if g(t) 6= 0 or if there is an atom at t.

To ensure that the outcome of the game is well defined for all of F’s per-

missible strategies, we restrict attention to S’s strategies that are Lebesgue

measurable with respect to t.

Assumption 2. The product measure σt×GS
t is Lebesgue measurable with

respect to t.

7In Section 4, we show that for any belief S may hold upon receiving the project, his
optimal choice belongs to this class of strategies.
8Formally, we say that there is an atom at τ if limt↑τ G

F(t) < GF(τ).
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Finally, if learning is prohibitively costly, no player will learn and the prob-

lem becomes trivial. We say that learning is non-redundant for a player

with a value v if there exist priors for which that player uses the learn-

ing technology. It turns out that for our technology this is equivalent to

assuming that λ v
v+1

> c.

Assumption 3. Learning is non-redundant for both players.

We use Bayesian Nash equilibrium as the solution concept.9 Since there

might be multiple equilibria in this game, we often refine our analysis and

focus on Pareto-efficient equilibria and refer to these equilibria as efficient

equilibria. Moreover, we assume that if S receives the project after ω he

will abort it immediately in order to avoid specifying redundant off-path

behavior.

We denote by qt the probability that the project is good conditional on

no breakthrough occurring until time t. Note that F’s belief while she is

learning is given by qt. We denote S’s belief upon receiving the project

at time t by qSt . It will be useful to use the likelihood ratio of the project

being good, lq = q
1−q , instead of q.

4. The decision-maker’s problem

In this section, we study the behavior of a decision maker (DM) whose

prior belief is q0 and the value she obtains from launching a good project

is v > 0.10 Before she makes a decision, the DM can examine the project

by means of the technology described above. If the DM learns until t ≥ 0

without observing a breakthrough, then the likelihood ratio that the project

is good is given by lqt = e−λtlq0 . Note that this likelihood ratio decreases

over time, which justifies the assertion that no news is bad news.

9In dynamic games of incomplete information it is standard to adopt some form of
perfection (e.g., a perfect Bayesian equilibrium), but in our game the two notions are
outcome-equivalent. A detailed proof can be provided upon request.
10This analysis characterizes S’s best response in the collaboration game.
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Clearly, if the DM decides to learn until time t > 0 she will adopt the project

immediately after a breakthrough occurs, and will abort the project at t

if a breakthrough has not occurred by then. The DM’s expected utility

under this strategy is

EU(t, q0) = q0

∫ t

0
λe−λs

(
e−rsv −

∫ s

0
cerudu

)
ds(1)

−
(
q0e
−λt + (1− q0)

)∫ t

0
cerudu.

The first term represents the net utility of a breakthrough when the project

is good, which occurs with an instantaneous probability λe−λs. The second

term represents the event in which no breakthrough occurs prior to t. In

this case, the DM incurs the cost of learning and aborts the project.

The DM will stop learning when she is indifferent between aborting the

project immediately and aborting it in dt units of time unless a break-

through occurs. The cost of learning for dt extra units of time is c while

the benefit is qtλv. Thus, the DM will abort the project when her belief

satisfies11

qt ≤ q(v) =
c

λv
.

A DM with belief q who decides to learn will learn until her belief decreases

to q(v). Thus, the amount of time in which she will learn is given by
lq(v)

lq
= e−λt. We can now define the DM’s value from learning when her

belief is q to be EU
∗
(q) ≡ maxt≥0EU(t, q).

For the DM to examine the project when qt > q(v), it must be that EU
∗
(qt)

is greater than her utility from launching the project immediately, qtv −

(1 − qt). The following proposition describes the DM’s optimal behavior

and establishes a few useful comparative statics.

11The following expression explains the precise form of Assumption 3. The DM prefers
launching the project to aborting it if qt(v + 1)− 1 > 0⇒ qt >

1
1+v . Thus, if under the

optimal stopping time the DM stops learning when she prefers launching the project to
aborting it (q(v) ≥ 1

1+v ), she will never learn.
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Proposition 4.1. Assume that learning is non-redundant for the DM.

There exist two cutoffs 0 < q(v) < q(v) < 1 such that it is optimal

for the DM to abort the project if qt ≤ q(v), to examine the project if

qt ∈ (q(v), q(v)], and to launch the project if q(v) ≤ qt. Moreover, q(v) and

q(v) converge monotonically to zero as v →∞.

In Figure 2 we illustrate Proposition 4.1 when F’s and S’s learning regions

are disjoint, where qj = q(vj) and qj = q(vj).

0 1
q0

qF
F aborts

qF
F learns F launches

qS
S aborts

qS
S learns S launches

Figure 2. Learning regions for qS > qF.

In the following sections we study the interaction between the two players.

It turns out that in the efficient equilibrium, F’s behavior may also resemble

the DM’s behavior. In the game, this requires that S agree with F’s choices.

We say that F behaves as DM if the players use the following strategy

profile: 1) F uses the optimal policy for vF as described in Proposition

4.1, where she breaks her indifference at q̄F in favor of learning and 2) S

launches the project immediately upon receiving it.

5. Large Conflict

Since vS < vF, Proposition 4.1 implies the following partial order of cutoff

beliefs:

qF < {qS, qF} < qS.

We focus on the case where qF < qS and refer to it as a large conflict. In this

case, the players’ learning regions in the decision problem do not intersect
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(see Figure 2). Proposition 4.1 implies that if the difference between vF

and vS is sufficiently large, the conflict between the players is large.

When there is a large conflict between F and S, they never agree that ex-

amining the project is the best option. Moreover, the players take the same

action in the decision problem only for extreme beliefs, namely, q0 < qF or

qS < q0. As we will see later, the large conflict has important implications

for the players’ interaction. In particular, when q0 ∈ (qF, qS), in every pure

strategy equilibrium the project is aborted at t = 0.12

We now characterize the efficient pure strategy equilibria of the game.13

Potentially, two types of equilibria may exist: equilibria in which at most

one player learns and equilibria in which both players learn. We refer to

the latter type as dual-learning equilibria. The next proposition shows that

there are no such equilibria in pure strategies.

Proposition 5.1. In the unique efficient equilibrium in pure strategies:

i) If q0 ≤ qF F behaves as DM, and ii) if q0 > qF, F passes the project

immediately to S who uses the optimal policy described in Proposition 4.1.

Note that in the efficient equilibrium at most one player examines the

project. The lack of dual learning implies that an appropriately chosen

single decision maker can obtain the same outcome that is obtained in the

efficient pure strategy equilibrium of the sequential learning game.

Proposition 5.1 relies on a simple but important observation about pure

strategy equilibria: on the equilibrium path, S infers perfectly whether F

observed a breakthrough or not and so the players’ relevant beliefs are iden-

tical. By Proposition 4.1, a pure strategy equilibrium in which S examines

the project cannot exist when q0 < qS. It is perhaps less intuitive that a

12The assumption that the conflict of interest is large enables us to convey the intuitions
for our results clearly and focus on how the players overcome the moral hazard problem
when q0 ∈ (qF, qS).
13The efficient equilibrium is unique up to the identity of the player who aborts the
project if the project is aborted at t = 0.
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dual-learning equilibrium cannot exist when q0 > qS. To see this, note that

if F passes the project at τF, then S examines the project until his belief

reaches qS unless a breakthrough occurs earlier. However, since qS > qF,

F prefers to launch the project irrespective of the outcome of S’s learning,

and so she would rather pass the project just before τF and induce S to

launch the project.

The above argument establishes that if q0 > qF then F does not learn in

a pure strategy equilibrium. Since S does not learn when q0 < qS, this

implies that when q0 ∈ (qF, qS] the project is aborted immediately in any

pure strategy equilibrium. This collaboration failure is the most prominent

manifestation of the moral hazard problem that we study.

Typically, moral hazard problems can be mitigated by contractual agree-

ments that align the players’ incentives. However, in our setting players

cannot write contracts and so they must rely on other means instead. In

particular, we show that strategic uncertainty alleviates the moral hazard

problem.

6. Mixed Strategy Equilibrium

In this section we show that the efficient equilibrium is often a dual-learning

equilibrium in which the players randomize. This equilibrium consists of

two stages: an early stage in which F randomizes between examining the

project and passing it without observing a breakthrough, and a later stage

in which F behaves as DM. The transition between stages occurs at a time

τ ∗ such that qτ∗ = qF.

First, we establish that in an efficient equilibrium F must behave as DM

from τ ? onward. This requires showing that the continuation values induced

by this behavior at time τ ∗ are consistent with the continuation values that

are required to sustain F’s mixing prior to τ ∗ and that this behavior is

indeed efficient. In fact, we show that any profile of mixed strategies is
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Pareto dominated by the profile of strategies in which F does not pass the

project without observing a breakthrough up to ω and S best responds to

this strategy. The problem with such a profile of strategies is that it may

not be an equilibrium (as is the case when q0 > qF).

Second, we build on the fact that F’s randomization prior to τ ∗ requires

her to be indifferent between passing the project at different times. This

indifference condition connects S’s belief and his induced behavior at dif-

ferent points in time. In particular, it shows that as time progresses S’s

belief about the quality of the project must gradually increase. In turn,

this implies that F gradually reduces the probability with which she passes

the project without a breakthrough.

Finally, we show by construction that if there is an equilibrium in mixed

strategies in which F does not behave as DM from time τ ∗ onward, then

there is another equilibrium that Pareto dominates the original one, in

which F behaves as DM from time τ ∗ onward. We finish this section by

providing a complete characterization of how players behave while F mixes

and of the conditions for existence of an efficient mixed strategy equilib-

rium.

6.1. The Merits of Honesty. If F randomizes between passing the project

without a breakthrough and examining it further, then S cannot infer that

the project is of good quality upon receiving it. In particular, this may lead

S to examine the project himself before launching it. In such instances,

F can free-ride on S, as F can pass the project and let S incur the cost

of examining it. It turns out that F prefers to report honestly and have

S launch the project immediately after a breakthrough occurs rather than

free-riding by faking breakthroughs.

Lemma 6.1. Let q0 ∈ (qF, qS]. Any equilibrium in which F does not report

honestly is Pareto dominated by a profile of strategies in which F reports
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honestly until ω (the same as in the baseline equilibrium) and S best re-

sponds. Moreover, in any equilibrium in which ω > 0 there exists τ ∗ > 0

such that qτ∗ ≤ qF and g(t) 6= 0 at any t < τ ∗.

To understand the second part of the result, recall that by Proposition 5.1

F cannot report honestly while qt > qF. The first part is more involved.

Recall that if F randomizes she must be indifferent between choosing any

stopping time in the support of her strategy and reporting honestly up

to ω. If F observes a breakthrough, she would rather have S launch the

project immediately. This is the case if S believes that F reports honestly,

but may not be the case under the profile in which F mixes. This change

is also beneficial for S. When F mixes, S may receive the project prior

to ω for two different reasons: either F passed the project after observing

a breakthrough or not. In the former case, S is better off launching the

project immediately without examining it. In the latter case, S would

rather have F continue learning than have her passing the project. In both

cases, S gets his preferred action when F reports honestly.

The main lesson from Lemma 6.1 is that, when q0 ≤ qF, F behaves as DM

in the efficient equilibrium. Moreover, when q0 > qF any equilibrium in

which F learns is in mixed strategies. Hence, for the rest of this section we

focus on the case where q0 > qF.

The fact that there is a continuation equilibrium in which F behaves as

DM when q0 = qF does not guarantee that it is part of a (mixed strategy)

equilibrium when q0 > qF. The problem is that S’s behavior may induce

continuation values that are not necessarily consistent with F’s indifference

whenever qt > qF. Maintaining F’s indifference may require F to start

behaving as a DM too late (i.e., when qt < qF) or to abort the project too

early (i.e., when qt > qF). In the next subsection we study F’s incentives

when she mixes, and determine what continuation values are required to

incentivize her to do so.
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6.2. Beliefs and Incentives. Examining the project is associated with a

direct cost of c and an indirect delay cost due to discounting. In addition,

F’s behavior is also affected by the changes in her beliefs while she examines

the project. In this section we derive S’s behavior that maintains F’s

indifference between continued learning and faking a breakthrough. We

then use Bayes’ law to infer F’s equilibrium behavior from S’s belief.

F’s expected value from learning until some time τ < τ ∗ while holding

belief q0 is given by

V F
τ = q0

∫ τ

0
λe−λs

[
e−rsWB

s −
∫ s

0
ce−rudu

]
ds(2)

+
(
q0e
−λτ + (1− q0)

)[
e−rτWNB

τ −
∫ τ

0
ce−rudu

]
,

where WB
s is her expected continuation value after a breakthrough at s and

WNB
s is her expected continuation value without a breakthrough at s. 14

The first term of (2) is the expected payoff from passing the project after a

breakthrough prior to τ , while the second term is the expected payoff from

passing the project at τ without observing a breakthrough.

As F is indifferent between all stopping times τ < τ ∗, it follows that V F
τ is

constant in τ , or, taking the derivative with respect to τ ,

λqτ
[
WNB
τ −WB

τ

]
+ rWNB

τ + c =
dWNB

τ

dτ
.(3)

Note that (3) is not a differential equation as WNB
τ and WB

τ are jointly

determined by S’s behavior at τ . Nevertheless, this equation can be used

to pin down S’s equilibrium belief and behavior. In particular, we use it to

prove Lemma 6.2, which establishes that at any point in time at which F

randomizes, S must respond by learning with a strictly positive probability

if he receives the project. Since at any point in time a breakthrough may

cause F to pass the project, it must be that qSt ≥ qt, and so Lemma 6.2

also implies that a mixed strategy equilibrium cannot exist if q0 > qS.

14EU
∗
(q) is a particular case of the more general (2). To see this, set WB

s = vF and
WNB
τ = 0, and let τ be defined implicitly as lq0e

−λτ = lqF . Integrating gives the result.
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Lemma 6.2. In any equilibrium, qSt ∈ (qS, qS] whenever g(t) 6= 0.

Lemma 6.2 provides necessary conditions for equation (3) to hold. In order

to derive the conditions that guarantee a solution, and hence describe the

equilibrium behavior, we need to study S’s behavior and belief in more

detail. Since S must respond optimally in equilibrium, it must be the case

that if he receives the project at t < τ ∗ and his induced belief is qSt < qS he

will examine the project, whereas if his induced belief is qSt = qS he may

launch the project immediately with some probability. Thus (3) becomes

a piecewise differential equation in WB
t .

To see this formally, note that

WB
t = σtv

FPS
(
qSt
)

+ (1− σt)vF(4)

WNB
t = qtW

B
t − (1− qt)(1− σt),

where P S (q) is the expected discounted arrival time of the first break-

through when S starts learning (optimally) with belief q. Formally,

P S (q) ≡


λ
r+λ

(
1−

( l
qS

lq

) r+λ
λ

)
if q > qS,

0 otherwise.

If qSt < qS, then S does not launch the project, σt = 1, and the conditions

in (4) reduce to WB
t = vFPS

(
qSt
)

and WNB
t = qtW

B
t , and (3) becomes

(3b) rqtW
B
t + c = qt

dWB
t

dt
.

On the other hand, if qSt = qS and S examines the project he will do so for

the amount of time it takes his belief to drift down to qS if no breakthrough

occurs. We refer to this amount of time as S’s maximal learning. Hence,

the expectation of the discount factor at the first breakthrough is fixed at
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PS
(
qS
)
. In this case, equation (3) becomes:

(3c) rqtW
B
t + c = qt

dWB
t

dt

∆(qt)

vF(1− PS
(
qS
)
)
,

where

∆(q) ≡ vF − 1

lq
− vFPS

(
qS
)

is the (scaled) difference between F’s payoff from launching the project

immediately and his payoff from free-riding on S’s maximal learning. It is

easy to see that ∆(q) is increasing in q and hence decreasing in t.

The following proposition describes the dynamics of S’s behavior while F

is mixing. It shows that S’s behavior can be separated into (at most) two

consecutive phases: a verification phase in which S examines the project

when he receives it (σ = 1) and a subsequent partial trust phase in which

he may launch the project immediately (σ < 1). Note that in the partial

trust phase it must be the case that qSt = qS. We denote the end of the

verification phase by τ ∗∗.

Proposition 6.3. Let q0 ∈
(
qF, qS

)
. In any equilibrium with ω > 0, F

mixes continuously on [0, τ ∗), and in this range
dWB

t

dt
> 0 and q̇St ≥ 0.

Moreover, in the verification phase q̇St > 0, and in the partial trust phase

σ̇t < 0.

Since PS(·) is strictly increasing, this proposition implies that in the verifi-

cation phase S increases his amount of learning over time (ṖS > 0) while in

the partial trust phase, if he learns, the amount of time he spends learning

is constant over time.

In the verification phase, equation (3b) immediately shows that WB
t is in-

creasing. The same conclusion in the partial trust phase follows from equa-

tion (3c) after we establish that in this phase ∆(qt) > 0.15 The economic

15When ∆(qt) ≤ 0, F prefers free-riding on S’s maximal learning to S immediately
launching the project. Hence, F’s value from faking a breakthrough (and inducing a
convex combination of immediate approval and free-riding on S’s maximal learning) is
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interpretation of F’s increasing continuation value after a breakthrough is

that S increases the value of “finding” a breakthrough to compensate F for

her “investment” in learning.

The intuitions for the proof of Proposition 6.3 highlight the reciprocal na-

ture of the players’ equilibrium behavior. Consider first the case in which

F’s behavior induces qSt < qS. In order for F to be continuously indiffer-

ent between learning and passing the project without a breakthrough, S

must increase the time he spends examining the project upon receiving it

as time progresses. Since S cannot commit to this behavior, F’s actions

must lead S’s belief to increase over time. Hence, the frequency with which

she passes the project without observing a breakthrough goes down as time

progresses. To see this formally, note that by Bayes’ law

(5)
gF(t)

1−GF(t)
= λ

lqt
lqSt − lqt

.

Consider now the case in which F’s behavior induces qSt = qS. For this be-

lief, S’s learning is constant, and since in this phase ∆(qt) > 0, to maintain

F’s indifference S must increase the frequency with which he launches the

project without examining it over time. As S’s belief remains constant, it

may appear that F does not change her behavior in line with S’s changes.

However, since true breakthroughs become less likely over time, to main-

tain S’s constant belief, F reciprocates by reducing the frequency of faking

breakthroughs.

The above intuitions do not explain why there is a single transition between

the two phases. To see this, note that S learns more in the partial trust

phase than in the verification phase. Moreover, in the partial trust phase

∆(qt) > 0 and so F prefers launching the project immediately to free-riding

on S’s maximal learning. Hence, were there a transition from a partial trust

greater than his value from behaving as DM. Since F’s continuation value in the partial
trust phase is lower than her value from reporting honestly until ω and having S best
respond to this strategy, it follows that F has a profitable deviation in the partial trust
phase if ∆(qt) ≤ 0.
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phase to a verification phase, F would strictly prefer to pass the project at

the end of the former phase.

While Assumption 1 does not rule out multiple discontinuities in F’s strat-

egy, Proposition 6.3 implies that S’s belief may be discontinuous only at

t = τ ∗. Thus, (5) also implies that F mixes continuously. As we will show

in the next section, the discontinuity in S’s belief at τ ∗ is the natural re-

flection of the boundary conditions that follow from the continuity of F’s

continuation values in the transition between mixing and honest reporting.

6.3. Characterization of Equilibrium. We now provide a character-

ization of the efficient mixed strategy equilibrium. We focus on priors

q0 ∈ (qF, qS] as the efficient equilibrium is in pure strategies for all q0 ≤ qF

and, by Lemma 6.2, there is no mixed strategy equilibrium when q0 > qS.

The dynamics of the beliefs that follow from this characterization are illus-

trated in Figure (1).

First, we must determine the time τ ? at which F stops randomizing and

starts reporting honestly. By Lemma 6.1 the natural candidate for this

transition point is the earliest time at which F behaving as DM can be sus-

tained in equilibrium. We show that this is indeed the transition point in

an efficient equilibrium by proving that efficiency requires that the continu-

ation equilibrium when qt = qF be efficient itself.16 Second, we characterize

the evolution of the players’ behavior prior to τ ?.17

Proposition 6.4. Let q0 ∈ (qF, qS]. In any efficient equilibrium with

ω > 0, F mixes continuously in [0, τ ∗), qτ∗ = qF, and F behaves as DM

from time τ ∗ onward. Moreover, a partial trust phase exists if and only if

16This step requires showing that the strategies that sustain this efficient equilibrium
exist whenever there is an equilibrium (even an inefficient one) in mixed strategies. We
show this in technical Lemma A.4, which will also be useful for proving the existence of
mixed strategy equilibria in Section 6.4. We postpone the intuition for this result until
that section.
17We ignore the non-generic case in which the solution to (3) is such that limt↓0 q

S
t 6= q0.

In this case there may be an equilibrium with an atom at t = 0.
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∆(qF) > 0, in which case στ∗ = 0 and στ∗∗ = 1 if a verification phase also

exists.

The sign of ∆(qF) determines F’s preferences over S’s actions if F passes

the project at τ ∗. If the sign is positive, F will prefer S to launch the

project while if it is negative F will prefer to free-ride on S’s maximal

learning. If F does not pass the project by τ ∗ she will behave as DM and

obtain a value of qFvF−(1−qF). Since S’s strategy must keep F indifferent

between learning and passing the project just before τ ∗, S’s action at τ ∗

must provide F with the (same) value qFvF − (1− qF).

This indifference implies that the mixing range cannot end in a partial

trust phase if ∆(qF) < 0. To see this, note that F’s value from passing

the project just before τ ∗ is a convex combination of the value from free-

riding on S’s maximal learning and the value from launching the project

immediately. Since ∆(qF) < 0, any such convex combination exceeds F’s

value from behaving as DM at τ ∗, namely, qFvF − (1− qF), and so F will

strictly prefer to pass the project just prior to τ ∗.

The mixing must end in a partial trust phase if ∆(qF) > 0. When ∆(qF) >

0 the only way S can provide F with the value she obtains from behaving

as DM at τ ∗, qFvF − (1 − qF), is by launching the project immediately if

he receives it at τ ∗. Hence S’s belief must equal qS for στ∗ = 0 to be his

optimal response. Furthermore, σ must decrease fast enough to maintain

F’s incentives to learn in the partial trust phase. This implies that the

length of the partial trust phase is bounded from above and so if q0 is large

relative to qF the interaction must start with a verification phase.18

The dynamics of the efficient mixed strategy equilibrium also highlight the

reciprocal nature of the relationship between S and F. Although under

the learning technology F’s learning time and S’s learning time are strate-

gic substitutes, they become strategic complements in the efficient mixed

18If there is a verification phase before the partial trust phase, the intuition for why
στ∗∗ = 1 relies on a similar boundary argument.



SEQUENTIAL LEARNING 23

strategy equilibrium. This strategic complementarity can be interpreted

as an implicit agreement: as time progresses, F behaves more honestly,

inducing S to increase the time he invests in the project upon receiving it,

and F keeps on examining the project since S keeps on increasing the time

he invests in the project. The mechanism that enables this type of “reci-

procity” is F’s equilibrium ability to dilute the content of the information

she acquires.

6.4. Existence of Equilibrium.

While our characterization is complete, we have not yet established whether

a mixed strategy equilibrium exists or not. In Sections 6.2 and 6.3 we

characterized S’s strategy and belief in the efficient equilibrium, conditional

on the existence of an equilibrium in mixed strategies. In doing so we

showed that Proposition 6.4 indeed describes the efficient equilibrium if

and only if S’s belief induced by these strategies satisfies two conditions:

it is consistent with Bayes’ law and qSt ≥ qt.

Thus, to establish existence, all we must do is to find a strategy for F that

induces the belief qSt that solves (3). From Bayes’ law it follows immediately

that a necessary condition for the existence of such a strategy is qSt ≥ qt.

In fact, since S’s equilibrium belief pins down the hazard rate of GF(·) (see

(5)) and from this hazard rate one can show that F’s strategy has an atom

outside the mixing range, it follows that it is possible to find a strategy

that supports any sequence of beliefs qSt for t ∈ [0, τ ∗). Hence, the above

condition is also sufficient.19

In the partial trust phase, qSt = qS and so (if such a phase exists in the

equilibrium candidate) the necessary and sufficient conditions for existence

hold in that phase. Therefore, to establish that an equilibrium exists it is

sufficient to show that qSt > qt in the verification phase of the equilibrium

candidate, i.e., when t < τ ∗∗. In fact, since qSt is increasing the only

19This claim is established formally in Lemma A.4 in the Appendix.
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condition for the existence of F’s equilibrium strategy is that qS0 > q0 when

the equilibrium starts with a verification phase.

If the verification phase lasts until the end of the mixing range (i.e., if

∆(qF) < 0), then τ ∗∗ = τ ∗ and qτ∗∗ = qF. If, on the other hand, the

verification phase ends before the end of the mixing range, the differen-

tial equation (3c) implies that qτ∗∗ is independent of the prior belief q0.20

Therefore, (in both cases) equation (3b) pins down qS0 independently of the

prior and it is straightforward to check whether qS0 > q0 or not. Moreover,

(3b) gives rise to a simple and intuitive condition under which the mixed

equilibrium exists.

Proposition 6.5. Let q0 ∈ (qF, qS). The mixed strategy equilibrium de-

scribed by Proposition 6.4 exists if

(6) vFP S(q0) + c

∫ τ∗∗

0

e−ru

qu
du < e−rτ

∗∗

v
F − 1

l
qF

if ∆(qF) < 0,

vFP S
(
qS
)

if ∆(qF) > 0.

Condition (6) can be interpreted as a cost-benefit analysis for F. The RHS

is the expected value from passing the project at the end of the verification

phase and letting S behave as the equilibrium suggests. When ∆(qF) < 0,

then S adopts the project immediately, and, when ∆(qF) > 0, then S learns

for the maximal amount of time. On the LHS, we have F’s opportunity

cost: the value she obtains from passing the project at 0 and letting S

behave as DM given the prior q0, and the direct cost of learning until the

end of the verification phase.

Proposition 6.5 implies that there is a unique critical belief q∗ > qF such

that the mixed equilibrium exists if and only if q0 < q∗. This implication is

illustrated in Figure 3, where we plot the likelihood ratios of the project’s

quality being good, lqt , under parametric assumptions for which ∆(qF) >

0. The blue line indicates the evolution of S’s belief (upon receiving the

20In the proof of Proposition 6.5 we show the exact determination of τ∗∗ and qτ∗∗ .
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project) in a mixed strategy equilibrium and the red line indicates the

evolution of F’s beliefs (i.e., qt). By Proposition 6.4, the mixing ends in

a partial trust phase when ∆(qF) > 0 and, given the prior q0, there may

be a verification phase from 0 to τ ∗∗. A mixed strategy equilibrium exists

as long as F can induce qS0 > q0, which in Figure 3 occurs whenever S’s

belief dynamics line is above F’s belief dynamics line. The intersection of

these two lines determines q∗, the highest prior for which a mixed strategy

equilibrium exists.

!"#

!"#

!"$

!"$

!"%

!"%$

&
'∗'∗∗

!"

!")

!"∗
Priors for which
there is a mixed
strategy
equilibrium

Figure 3. The players’ relevant belief dynamics in the efficient
mixed strategy equilibrium when ∆(qF) > 0 and τ∗∗ ∈ (0, τ∗).

Proposition 6.5 enables us to determine whether the collaboration failure

in the maximal conflict range can be avoided. In particular, it is sufficient

to check whether a mixed equilibrium exists when q0 = qS.
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Corollary 6.6. A mixed strategy equilibrium exists for all q0 ∈ (qF, qS) if

and only if

(7) c

∫ τ∗∗

0

e−ru

qu
<


e−rτ

∗∗
(
vF − 1

lqF

)
if ∆(qF) < 0,

e−rτ
∗∗
vFP S

(
qS
)

if ∆(qF) > 0.

6.5. Efficiency of Mixed Strategy Equilibrium.

Although mixing allows players to increase learning time, there are two

welfare costs associated with the mixed strategy equilibrium. The first

inefficiency is the natural solution to the moral hazard problem in our

model: excessive scrutiny of (good) projects. When F observes a break-

through S does not necessarily launch the project immediately. Instead,

he may examine the project for a while and approve it only if he observes

a breakthrough himself. This leads to a delay in launching some projects

or to aborting projects that F knows to be good. The second type of

inefficiency is less intuitive: a project may be launched after its (costly)

examination has uncovered only bad news. If F learns and then passes the

project without observing a breakthrough in the partial trust phase, S may

launch the project immediately even though the posterior probability that

it is good is lower than what it initially was.

We now provide conditions under which the mixed strategy equilibrium we

found is the unique Pareto efficient equilibrium. If the prior is in the range

of maximal conflict it is clear that if this equilibrium exists, then it is the

unique efficient equilibrium.21 If q0 > qS, then there is a pure strategy

equilibrium in which the project is examined, which S may prefer to the

mixed strategy one. Nevertheless, the equilibrium in mixed strategies we

found is always Pareto efficient as F prefers this equilibrium to any pure

one. To see this, note that, since qS0 > q0, passing the project at t = 0 in

the mixed strategy equilibrium induces S to learn for a longer time than he

21When qS < qF there is no region of maximal conflict; thus, our welfare analysis is less
clear cut.
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would learn in the pure strategy equilibrium, where F passes the project

immediately.

The natural question that arises is whether the mixed strategy equilibrium

is the unique Pareto efficient equilibrium when q0 > qS. When q0 > qS, in

the efficient pure strategy equilibrium, F passes the project at t = 0 and

S learns until his belief reaches qS. Thus, when q0 is sufficiently close to

qS the project is launched only if a breakthrough occurs fairly quickly. By

contrast, in the mixed strategy equilibrium, the project may be launched

even if the first breakthrough occurs fairly late, which can offset the ineffi-

ciencies that may arise in the mixed strategy equilibrium. Thus, when the

prior is close to qS, the mixed strategy equilibrium outperforms the pure

strategy equilibrium. The following proposition formalizes this intuition.

Proposition 6.7. There exists some q∗∗ ∈
(
qF, q∗

)
such that for all q0 ∈(

qF, q∗∗
)

the unique efficient equilibrium is in mixed strategies. Moreover,

if condition (7) holds then qS < q∗∗.

To understand the logic behind this result, note that in both the effi-

cient mixed strategy equilibrium and the efficient pure strategy equilib-

rium, the value of each player is continuous in the prior. Moreover, when

q0 ∈ (qF, qS), in the latter case the value of each player is zero whereas in

the former case, generically, it is strictly positive. The proof follows from

a standard continuity argument and is omitted.

7. Concluding Remarks

We develop a model in which two players examine the quality of a joint

project privately and sequentially. We assume that the first player obtains

a higher value from launching a good project than the second player. The

combination of these assumptions creates a moral hazard problem. The

efficient equilibrium is in pure strategies only if the players’ prior beliefs are

extreme. For intermediate prior beliefs, the efficient equilibrium involves
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randomization and, unlike in pure strategy equilibria, both players examine

the project.

The efficiency of the mixed strategy equilibrium hinges on the role of an

action, “passing the project to S,” as a mechanism that enables partial

information transmission. Although the information about the quality of

the project is perfectly transmitted in pure strategy equilibria, there is no

room for collaboration in the region of maximal conflict (qF, qS): the project

is immediately aborted as no player can be trusted to learn. Mixing in that

region allows F to dilute the information she transmits when she passes the

project. This dilution of information aligns the players’ incentives, thereby

(partially) solving the moral hazard problem, which in turn benefits both

players.

S’s ability to also collect information makes F willing to collect information

herself in this region. In fact, the value of F’s information follows from

inducing S to examine the project. In particular, since S adjusts choices

smoothly as a function of time, F keeps on investing in learning. If S were

unable to collect information himself, F would not have any information

to transmit. This is because F’s information has no value when S cannot

reciprocate with respect to her learning time.
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Appendix A. Proofs

Proof of Proposition 4.1

Integrating and rearranging (1), we get

EU(t, q0) = q0

(
v − c

λ

) λ

r + λ

(
1− e−(r+λ)t

)
− (1− q0)

c

r

(
1− e−rt

)
.

Observe that EU(t, q0) is concave in t. Hence, the FOC ∂EU(t,q0)
∂t

= 0 is

necessary and sufficient for optimality:

0 = q0

(
v − c

λ

)
λe−(r+λ)t − (1− q0)ce−rt

and since lqt = lq0e
−λt we obtain the cutoff beliefs qt = q(v) = c

λv
.

Learning is better than adopting the project ifM(q) ≡ EU
∗

(q)
q
−
(
vF − 1

lq

)
≥

0 or

c

r + λ

1−

(
lq(v)

lq

) λ
r+λ

− lq(v)

lq

c

r

1−

(
lq(v)

lq

) r
λ

− lq(v)

(
v − 1

lq

)
≥ 0.

Note first that M(q) is continuous and decreasing in q. Second, it is positive

at q(v) if v < 1
lq(v)

, which is true by Assumption 3. Third, when q = 1

launching the project is the unique best response and so limq→1M(q) < 0.

Thus, by the mean value theorem, there is a unique cutoff belief q(v) ∈(
q(v), 1

)
for which M(q(v)) = 0. Hence, qt < q(v) if and only if the DM

prefers learning optimally to adopting the project.
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We now establish the comparative statics. Trivially, q(v) = c
λv

converges

monotonically to zero as v → ∞. Since q(v) is continuous in v for any q

the envelope theorem implies that

∂EU∗(q)

∂v
= q

λ

r + λ

(
1−

(
lq(v)

lq

)) r+λ
r

< q,

which, in turn, implies that M(q) is decreasing in v. Since M(q) is de-

creasing in q it follows that q(v) is decreasing in v by the implicit function

theorem. To complete the proof we must show that limv→∞ q(v) = 0. As-

sume to the contrary that q(v) is bounded from below by some q̃ > 0. Note

that EU
∗
(q̃) is bounded from above by q̃v λ

r+λ
; thus, for sufficiently high v

we have that EU∗(q̃) < q̃v − (1− q̃), a contradiction.

Proof of Proposition 5.1

In a pure strategy equilibrium Bayes’ law implies that qt = qSt . To see

this, note that if F submits the project at t < τF, then S must infer that a

breakthrough occurred and update his belief to qSt = 1. On the other hand,

if F submits the project at t = τF, then S must infer that a breakthrough

did not occur up to that point and therefore qSt = qt.

If q0 ≤ qF, F behaving as DM is an equilibrium as F does not want to

launch the project unless she observes a breakthrough. Moreover, since

q0 < qS, it follows that S does not learn in any pure strategy equilibrium.

Thus, this is the unique efficient equilibrium.

If q0 > qF, there is an equilibrium with τF = 0 in which S uses an optimal

policy for a DM. Too see this, note that any deviation by F will lead to S

aborting the project upon receiving it by our assumption on off-equilibrium

beliefs. Next, we show that for these priors there is no equilibrium in pure

strategies with τF > 0. Let τF > 0. There are two possible events: either

a player observes a breakthrough before qS or no player does. In the first

case, F is better off if the project is launched at t = 0, and in the second

case, the project is aborted. If only F learns before the project is aborted,
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q0 > qF implies that she would rather launch at t = 0. If both players

learn, the project is aborted when qt = qS, and so qS > qF implies that F

would rather launch the project than abort it. �

Proof of Lemma 6.1

We start this proof by establishing the following technical result.

Lemma A.1. In any equilibrium, ω < ∞. Moreover, if there is an atom

at ω then qω = qSω, and otherwise limt→ω(qt − qSt ) = 0.

Proof of Lemma A.1. First, we show that ω < ∞. If ω = ∞, for every

stopping rule τ in the support of GF(·) there exists a stopping rule τ ′ > 2τ

that is also in the support. The continuation payoff at τ from the stopping

time τ ′ is bounded from above by

qτv
F − (1− qτ )c

1− e−r(τ ′−τ)

r
< qτv

F − (1− qτ )c
1− e−rτ

r
.

Since limτ→∞ qτ = 0, the RHS converges to − c
r
, i.e., the continuation utility

at sufficiently large τ is negative.

If ω is an atom of G, than S’s belief at ω is correct. Assume that ω is not

an atom of G. Assumption 1 implies that there exists an interval L ending

at ω in which G(t) is continuously differentiable. Let

h(t) =
g(t)

1−G(t)
=

g(t)∫ ω
t
g(s)ds

denote the hazard ratio of G(·). By Bayes’ law qSt = qt
λ+h(t)
λqt+h(t)

, which shows

that qSt is continuous in t and thus limt→ω(qt − qSt ) exists.

Assume to the contrary that there exists ε > 0 such that qSt − qt > ε for

all t ∈ L. Since beliefs belong to a compact interval, λ+h(t)
λqt+h(t)

> 1 + δ for

some δ > 0. If limt→ωg(t) > 0, then limt→ωh(t) = ∞, and the proof is

complete. If g(ω) = 0, then due to the continuity of g(·) there exists a

sequence tn → ω such that for every tn, we have that g(s) < g(tn) for all
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s > tn. For this sequence,

h(tn) >
g(tn)∫ ω

tn
g(tn)ds

=
1

ω − tn
;

thus, limn→∞h(tn) =∞, which concludes the proof. �

Consider a mixed strategy equilibrium E in which either g(ω) > 0 or there

is an atom at ω (the proof when g(ω) = 0 is analogous and hence omitted).

F’s expected payoff in E is equal to her payoff when she uses the stopping

time ω. By Lemma A.1, we have that qω = qSω and thus S’s response at

ω in E is also a best response in the profile in which F reports honestly

until ω (which we denote by E’). In E’ and when F uses the stopping rule

ω in E, she passes the project only after a breakthrough. However, in the

former case S immediately launches the project while in the latter case this

may not occur. Thus, F prefers E’ to E.

Now, we show that S strictly prefers the outcome under E’ to the outcome

under E. If the project is submitted after a breakthrough at some time

t < ω or if it is submitted at ω, then S weakly prefers his payoff under E’

to that under E. If the project is submitted without a breakthrough at

some time t < ω, since q0 < qS, then S strictly prefers to have F continue

learning until ω and then proceed with the equilibrium behavior under E,

which is exactly what occurs in E’.

Note that E’ is a pure strategy profile in which F learns honestly until ω.

By Proposition 5.1, for all q > qF, F’s payoff in E’ is strictly less than

her payoff from launching the project immediately. Thus, for any t such

that qt > qF, F’s continuation payoff from E is less than her payoff from

launching the project immediately. Thus, for E to be an equilibrium, S

cannot launch the project immediately if he receives it at any time t when

qt > qF. Hence, when qt > qF, then F cannot report honestly. �

Proof of Lemma 6.2
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As F must be indifferent between all of the stopping times in her strategy’s

support, the value function (2) is constant and differentiable at all stopping

times τ < τ ∗. Differentiating V F
τ w.r.t. to τ gives

0 = q0λe
−λτ
[
e−rτWB

τ −
∫ τ

0

ce−rudu

]
− λq0e

−λτ
[
e−rτWNB

τ −
∫ τ

0

ce−rudu

]
+
(
q0e
−λτ + (1− q0)

) [
e−rτ

dWNB
τ

dτ
− re−rτWNB

τ − ce−rτ
]
,

which simplifies to equation (3). Note that equation (3) proves the differ-

entiability (and hence the continuity) of WNB
τ .

Assume to the contrary that qSτ > qS. Since qSτ > qS, S adopts the project

at τ . Thus, in equilibrium, we must have

WNB
τ = qτv

F − (1− qτ ) WB
τ = vF

dWNB
τ

dτ
= q̇τ (v

F + 1).

Substituting into (3) and using the law of motion of beliefs q̇τ = −λqτ (1−

qτ ), we obtain

r
(
qτv

F − (1− qτ )
)

+ c = 0,

which can only hold for a single τ (and not an interval). This is in contra-

diction to F’s indifference between all stopping times τ < τ ∗.

Assume now that qSτ ≤ qS. It follows that S aborts the project at τ . Thus,

(3) reduces to c = 0, which is also a contradiction. �

Proof of Proposition 6.3

By Assumption 1, GF(·) is continuously differentiable at all but a finite

number of points. Since the number of nondifferentiability points of GF(·)

is finite, we can partition the mixing range [0, τ ∗) into a finite collection of

intervals in which g(t) is continuous. Note that within each such interval,

S’s equilibrium belief is continuous. Let L denote the partition associated

with the equilibrium E.
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The proof proceeds as follows. First, we establish that the continuation

value WB
t is continuous and strictly increasing in [0, τ ∗). Second, we use

this result to show that qSt is continuous and increasing in t in this range.

Finally, we use these results to derive the proposition.

Lemma A.2. WB
t is strictly increasing in any L ∈ L.

Proof of Lemma A.2. Consider an arbitrary L ∈ L. Since qSt is continuous

on L, this interval can be covered by a collection of intervals L′ such that

for every L′ ∈ L′, either: (1) qSτ < qS for every t ∈ L′, or (2) qSτ = qS for

every t ∈ L′.

First, consider an interval L′ ∈ L′ such that qSτ < qS for every t ∈ L′. We

obtain that the relevant differential equation is

(3b′) c =
dWNB

t

dt
− (r − λ(1− qt))WNB

t .

Integrating we obtain that

e−rt
WNB
t

qt
= e−rb

WNB
b

qb
−
∫ b

t

c
e−rs

qs
ds,

where b ≡ supL′. This implies that in terms of WB,

(8) e−rtWB
t = e−rbWB

b
−
∫ b

t

c
e−rs

qs
ds,

which implies that WB
t is increasing over time.

Second, consider an interval L′ ⊂ L′ in which qSt = qS. By Lemma 6.1 we

have that in any equilibrium F’s continuation utility at any time t ∈ L′

is strictly less than her continuation utility from launching the project

immediately. F’s expected utility from passing the project at t is a convex

combination of launching the project and maximal learning. If ∆(qt) <

0, then F prefers any such convex combination to launching the project

immediately, a contradiction. Hence ∆(qt) > 0 in this interval.
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To complete the proof, note that (3c) implies that WB
t is strictly increasing

if ∆(qt) > 0. �

Lemma A.3. qSt is continuous and increasing at all times t ∈ [0, τ ∗).

Proof of Lemma A.3. By the piecewise continuity of g(·) we have finitely

many points of discontinuity of qSt . Let τ ∈ (0, τ ∗) be a discontinuity point

in S’s belief. First, consider the case where limt↑τ q
S
t > qSτ . If limt↑τ q

S
t < qS,

then the definition of WB
t = vFPS(qSt ) directly implies that WB

t is not

continuous. If limt↑τ q
S
t = qS, by Lemma A.2 we have that ∆(qt) > 0, and

so it follows that for any probability of adoption 1− σ > 0,

lim
t↑τ

(1− σ)
(
qtv

F − (1− qt)
)

+ σqtP
S(qSt ) > qτP

S(qSτ )(9)

⇒ lim
t↑τ

WNB
t > WNB

τ ,

which contradicts the continuity of WB
t =

WNB
t

qt
. Now consider the case

limt↑τ q
S
t < qSτ . If qSτ < qS, then by the definition of WB

t it must be the

case that WB
t is discontinuous, which is not possible. But if qSτ = qS, then

∆(qt) > 0 implies that limt↑τ W
NB
t < WNB

τ , and hence contradicts the

continuity of WB
t =

WNB
t

qt
. The case where limt↓τ q

S
t 6= qSτ is analogous.

We now show that qSt is continuous at t = 0. Because GF(·) is right

continuous we must focus only on an atom at t = 0. Because q0 ≤ qS0 ,

we must have that q0 < limt↓τ q
S
t and hence the previous argument can be

applied.

To coomplete the proof, note that in any interval where qSt < qS, by Lemma

A.2, we have that PS(qSt ) =
WB
t

vF
is strictly increasing. This implies that

qSt is strictly increasing in such an interval. The continuity of qSt together

with the fact that qSt ∈ (qS, qS] for any t < τ ∗ implies that qSt is increasing

in [0, τ ∗). �

Since qSt is increasing for all t < τ ∗, it follows that there is at most one

transition from the verification phase to the partial trust phase. That is,
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τ ∗∗ is well defined. Moreover, by the previous argument in the verification

phase qSt is strictly increasing. To complete the proof, note that in Lemma

A.2 we showed that qSt = qS only if ∆(qt) > 0. In this interval the relevant

differential equation (3c) can be written in terms of σt to obtain

(3c′) c+ rqtv
F
(
1− σt

(
1− PS

(
qS
)))

= −σ̇tqt∆(qt).

Hence, in the partial trust phase σ̇τ < 0. �

Proof of Proposition 6.4

First, we show that a necessary condition for an equilibrium to be efficient is

that the continuation equilibrium at τ ∗ is undominated. To do so, we show

that if there exists an equilibrium with the dominated continuation utilities

at τ ∗, there also exists an equilibrium with the dominating continuation

utilities at τ ∗. Then, we show that increasing both continuation utilities at

τ
∗

increases the expected utility of both players.

Second, we use the fact that F behaving as DM is the unique efficient

continuation equilibrium when qt = qF, which makes it sufficient to focus

on qτ∗ = qF to pin down the mixing behavior before τ ∗.

To establish the first part of the proof we need the following technical

lemma.

Lemma A.4. The solution of equation (3) characterizes an equilibrium if

and only if qS0 ≥ q0 and σ0 ≤ 1.

Proof of Lemma A.4. Because the differential equation (3) assumes that

S best responds to his belief, the solution of equation (3) describes an

equilibrium if for every t ∈ [0, τ ∗) we have that σt ∈ [0, 1], qSt ∈ (qS, qS],

and qSt is consistent with Bayes’ law. The first two requirements follow

directly from the construction of the differential equation while the last

one follows from the fact that, in the mixing range, the hazard ratio of
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GF(·) must be positive and:

λ
lqt

lqSt − lqt
=

gF(t)

1−GF(t)

(by (5)). This implies that qt < qSt for all t < τ ∗ and since qSt is increasing

it is in fact sufficient to verify that q0 ≤ qS0 .

Finally, we also need to show that there is a strategy for F that sustains

these beliefs. Integrating (5) we have that

1−GF(t) =
(
1−GF(τ ∗)

)
e
−λ
∫ τ∗
t

(
lqu

l
qSu
−lqu

)
du

and substituting into (5) we have that F’s strategy is

gF(s) = λ
lqs

lqSs − lqs

(
1−GF(τ ∗)

)
e
−λ
∫ τ∗
s

(
lqu

l
qSu
−lqu

)
du

.(10)

Integrating h(s) ≡ gF(s)
1−GF(s)

we have that GF(τ ∗) = 1 − e−
∫ τ∗
0 h(u)du < 1.

Since F behaves as DM from time τ ∗ onward, her strategy has an atom at

ω, and so her strategy can be completed by setting the weight of this atom

to 1−GF(τ ∗). �

Solving the piecewise differential equation (3) requires a boundary condi-

tion. We use F’s continuation utility at τ ∗ as this boundary condition.

Denote by WNB
t (U) the solution to (3) with boundary condition U at τ ∗,

denote by qSt (U) the belief associated with this solution, and denote by

σt(U) S’s strategy in this equilibrium.

Recall that the particular solution to a first-order differential equation such

as (3) is uniquely determined by its boundary condition, U . Moreover, it

is pointwise monotonically increasing in this boundary condition and so

WNB
t (U) is increasing in U for any t < τ ∗. Let U2 > U1 be two feasi-

ble continuation utilities (i.e., continuation utilities that can be supported

by some continuation equilibria) at τ ∗, by the previous observation that

WNB
0 (U2) > WNB

0 (U1).
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First consider the case where U2 ≤ qτ∗v
FPS

(
qS
)
. In this case, Proposition

6.3 implies that for i = 1, 2, qSt (U i) < qS for all t < τ ∗ and so σ0(U i) = 1 and

WNB
0 (U i) = q0v

FPS
(
qS0 (U i)

)
. Hence we have that qS0 (U1) < qS0 (U2) by the

monotonicity of PS (·) and WNB
0 (U2) > WNB

0 (U1). Thus, the continuation

utility U2 can be supported by some equilibrium.

Next, consider the case where U2 > qτ∗v
FPS

(
qS
)
; this continuation utility

is feasible only if ∆(qτ∗) > 0. Since ∆(·) is monotonically increasing, it

follows that ∆(q0) > 0 , which implies that WNB
0 ≥ q0v

FPS
(
qS0
)
, and that

this weak inequality holds with equality if qS0 < qS. Thus, if qS0 (U1) >

qS0 (U2), we have that

WNB
0 (U2) = q0v

FPS
(
qS0 (U2)

)
< q0v

FPS
(
qS0 (U1)

)
≤ WNB

0 (U1),

in contradiction to the fact that WNB
0 (U2) > WNB

0 (U1). Note, that if

qS0 (U1) = qS0 (U2) = qS, then WNB
0 (U1) < WNB

0 (U2) implies that σ0(U1) >

σ0(U2). Hence the continuation utility U2 can be supported by some equi-

librium.

The previous argument establishes that increasing F’s continuation at τ ∗

strictly increases her value at 0. We now focus on the impact of increasing

both players’ continuation utilities at τ ∗ on S’s utility at time zero. There

is a direct effect due to the change in S’s continuation utility at τ ∗ and an

indirect effect due to the change in F’s equilibrium strategy induced by the

change in her continuation utility at τ ∗.

S’s expected utility from an equilibrium of the type described in Proposition

6.3 is given by
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V S
0 =

∫ τ∗

0

(
q0

(
1−GF(s)

)
λe−λs +

(
q0e
−λs + (1− q0)

)
gF(s)

)
e−rs

(11)

[
qSs

(
vS − c

λ

)
PS
(
qSs
)
− (1− qSs )

c

r

(
1−

(
lqS

lqSs

) r
λ

)]
ds

+ e−rτ
∗ (

1−GF(τ ∗)
) (
q0e
−λτ∗ + (1− q0)

)
V S
τ∗ ,

where V S
τ∗ is S’s continuation utility at τ ∗. It follows immediately that the

direct effect of V S
τ∗ is positive.

We now focus on the indirect effect. Using (10), we can write the value

function (11) as

(11b)
V S

0

(1− q0) (1−GF(τ∗))
= e−rτ

∗ V S
τ∗

1− qτ∗
+

∫ τ∗

0

d

e−λ ∫ τ∗s
(

lqu
l
qSu
−lqu

)
du


ds

e−rs

+

lqSs (vS − c

λ

)
PS
(
qSs
)
− c

r

1−

(
lqS

lqSs

) r
λ

 ds.
It is easy to see that the first and second parts of the integrand are in-

creasing in lqSu and lqSs , respectively. Hence, it is sufficient to show that

1−GF(τ ∗) does not decrease when F’s continuation utility increases. The

fact that the indirect effect is also positive follows from Lemma A.4, where

we showed that GF(τ ∗) = 1− e−
∫ τ∗
0 h(u)du.

By Proposition 5.1 and Lemma 6.1, F behaving as DM from time τ ∗ onward

is the unique Pareto efficient continuation equilibrium at time τ ∗. Hence,

by the previous arguments, this must be the continuation equilibrium at

τ ∗ in any Pareto-efficient equilibrium of the type described in Proposition

6.3.

To complete the proof, we now determine the structure of the equilibrium

in [0, τ ∗] that must be played in order for there to exist a continuation
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equilibrium at τ ∗ in which F behaves as DM. Consider first the case where

∆(qF) > 0. If there is no partial trust phase, then

WNB
τ∗ ≤ qFP (qS)vF < qFvF − (1− qF),

which contradicts the continuity of F’s value function at τ ∗. Next, consider

the case where ∆(qF) < 0 and assume that there is a partial trust phase.

By the continuity of ∆(q) this implies that there exists an interval in this

phase for which ∆(qτ ) < 0, which contradicts Lemma A.2.

Note that, generically, in the equilibrium characterized above limt↓0 q
S
t 6= q0.

Therefore, generically, GF(·) cannot have an atom at zero. �

Proof of Proposition 6.5

Recall that by Lemma A.4, qS0 ≥ q0 and σ0 ≤ 1 are necesarry and suffi-

cient conditions for the existence of the mixed strategy equilibrium. We

construct the equilibrium by focusing on the cases where ∆(qF) > 0 and

∆(qF) < 0.

Consider first the case where ∆(qF) > 0. The solution of the differential

equation in the partial trust phase equation (3c′) is

στ∗ − σt × e
∫ τ∗
t asds = −

∫ τ∗

t

c
qs

+ rvF

∆(qs)
× e

∫ τ∗
t aududs,

where as = r
(

1 + 1
lqs∆(qs)

)
. Integrating we have that∫ τ∗

t

asds = r

(
τ ∗ − t− 1

λ
ln

(
∆(qτ∗)

∆(qt)

))
and since in this case στ∗ = 0, it follows that in the partial trust phase σt

is given by

σt × e−rt × (∆(qt))
1
λ =

∫ τ∗

t

(
c

qs
+ rvF

)
× e−rs × (∆(qs))

1−λ
λ ds.(12)

If

(∆(q0))
1
λ ≥

∫ τ∗

0

(
c

qs
+ rvF

)
× e−rs × (∆(qs))

1−λ
λ ds,
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then σt < 1 for all t > 0, and there is no verification phase. In this case

qS0 = qS and the equilibrium exists.

When ∆(qF) > 0, a verification phase exists only if

(∆(q0))
1
λ <

∫ τ∗

0

(
c

qs
+ rvF

)
× e−rs × (∆(qs))

1−λ
λ ds,

in which case τ ∗∗ is given by setting σt = 1 in (12), which yields

e−rτ
∗∗ × (∆(qτ∗∗))

1
λ =

∫ τ∗

τ∗∗

(
c

qs
+ rvF

)
× e−rs × (∆(qs))

1−λ
λ ds.

In this phase the relevant differential equation (8) reduces to

(8b) e−rtPS
(
qSt
)

= e−rτ
∗∗
PS
(
qS
)
− c

vF

∫ τ∗∗

t

e−ru

qu
du.

Recall that the equilibrium exists if qS0 > q0, which is equivalent to:

PS (q0) < e−rτ
∗∗
PS
(
qS
)
− c

vF

∫ τ∗∗

0

e−ru

qu
du.

Now consider the case where ∆(qF) < 0 and there is only a verification

phase. The relevant differential equation (8) reduces to

(8c) e−rtvFPS
(
qSt
)

= e−rτ
∗∗
(
vF − 1

lqF

)
− c

∫ τ∗∗

t

e−ru

qu
du,

and the condition for existence reduces to

vFPS (q0) < e−rτ
∗
(
vF − 1

lqF

)
− c

∫ τ∗

0

e−ru

qu
du.
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