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Abstract

We study multilateral risk-sharing when the state of nature is unverifiable, so

that contracts are conditioned on a state-dependent signal (e.g., net earnings in

a financial report). A subset of the agents can manipulate the signal’s realisation

at some cost and as a result Pareto-optimal reallocation of risk is precluded. The

agents can write additional side-contracts that can be used to incentivise one of

the parties to manipulate the signal. Using a novel stability notion that takes

into account agents’ beliefs about contemporaneous deviations initiated by their

counterparties, we explore the limits of risk-sharing and risk-bearing.
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1 Introduction

It is well known that when agents have access to Arrow–Debreu securities, they can

reallocate risk efficiently. In practice, however, state-contingent contracts are not always

feasible, as the state of nature may be unobservable, unverifiable, or hard to assess to

the point where state-contingent contracts are unenforceable or too costly to implement.

For these reasons, risk-sharing contracts are often contingent on verifiable variables

that are informative about the state. For example, financial benchmarks such as the

inter-bank offered rates “have been heavily used in contracts whose purpose is to trans-

fer risk related to fluctuations in general market-wide interest rates” (Duffie and Stein,

2015). Other prominent examples are insurance contracts, which are often contingent

on an appraisal rather than on actual damage, catastrophe bonds (e.g., World Bank

Pandemic Bonds), which are often contingent on indices, evaluations, and statements

by official authorities rather than on actual damages, and managerial compensation

contracts, which are often contingent on a firm’s net earnings as they appear in its

financial reports rather than on the firm’s actual performance. In the present paper,

we focus on these types of contracts and refer to the contractible variable as a signal.

Transferring risk by means of signal-contingent contracts gives rise to a moral haz-

ard problem that results from the agents’ ability to manipulate the signal by taking

costly actions. Such costly actions include: forging an appraisal or misreporting the

occurrence of an insurable event; deferring recognition of some expenditure to change

a firm’s net earnings on a specific date; inflating future prices in a commodity market

by placing large buy orders in the underlying market; and hiring lobbyists to influence

a policy on which a contract depends.

In this paper, we examine how the above moral hazard affects individuals’ ability

to share risk. To this end, we study a model in which multiple agents transfer risk

by means of contracts that are budget-balanced transfers contingent on a signal. We

assume that a subset of agents can manipulate the signal unilaterally by incurring

some cost. When for each agent the cost of manipulating the signal is greater than

the corresponding benefit, the collection of contracts is said to be incentive compatible

(IC) and there is no manipulation. In such cases, the signal perfectly reveals the state.

To illustrate some of the model’s features, we present the following example.

Example 1 There are two states, high (H) and low (L). Alice and Bob are each

exposed to a negative shock of 100 dollars in state L and a risk-neutral insurer is

willing to share some of the risk for a premium. Risk-sharing contracts are contingent
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on an appraisal s ∈ {h, l} made by a certified appraiser. The appraiser reports h in

state H and l in state L. Alice and Bob both know the appraiser and, in state H, each

of them can pay him a bribe of 90 dollars to change his appraisal from h to l. Observe

that full insurance is not IC as it incentivises Alice and Bob to bribe the appraiser in

state H. Because of the moral hazard, each of them can receive a coverage of at most

90 dollars. We shall refer to such coverage as constrained-efficient coverage.

A key feature in this work is that, at the contracting stage, before the state is

realised, agents can add new contracts to the existing collection of contracts. We refer

to these contracts as side-contracts. A side-contract can be used to provide legitimate

mutual insurance or to incentivise one of the contracting parties to manipulate the

signal ex post. The latter type of side-contract introduces a new source of instability

into multilateral risk-sharing since it imposes an externality on third parties.

Using Example 1, let us demonstrate how a pair of agents can benefit from a side-

contract that incentivises one of them to manipulate the signal ex post. Suppose that

Alice and Bob each receive a coverage of 90 dollars. At the contracting stage, Bob and

Alice can benefit from adding a side-contract in which Bob pays Alice a small ε > 0

if and only if s = l. This side-contract incentivises Alice to bribe the appraiser in

state H, which makes Bob better off: he guarantees his preferred appraisal by paying

a small cost of ε. Alice is also better off since she obtains an extra ε from Bob. We

can conclude that the side-contract makes both agents better off when the possibility

of ex-post manipulation is taken into account.

Side-contracts can have a negative effect on a third party due to the contracting

parties’ ability to manipulate the signal ex post. For instance, the ex-post manipulation

of the appraisal imposes a negative externality on an insurer who provides Alice and

Bob with coverage. In fact, an insurer who predicts the side-contract between Alice

and Bob would not provide them with coverage due to this negative effect. This type

of contractual externality plays a key role in our model.

Since contracts require mutual consent, we study collections of contracts that are

robust to both unilateral and multilateral deviations. We say that a collection of

contracts is stable if no group of agents are better off writing a new side-contract

and no agent is better off cancelling a previously signed contract unilaterally. This

cooperative notion is inspired by the network formation literature (which typically

focuses on single and pairwise deviations; see, e.g., Jackson and Wolinsky, 1996) and it

enables us to refrain from making particular assumptions about the way contracts are
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negotiated.

We illustrate that IC stable collections of contracts do not exist when manipula-

tion is not prohibitively costly. The reason for this effect is that our stability notion

considers one deviation at a time, which is an implicit assumption that whenever a

side-contract is beneficial for the deviating parties, they will sign it.1 This assumption

is particularly restrictive when there are contractual externalities as the attractiveness

of a side-contract is affected by the existence of side-contracts between other agents:

an agent may refuse to sign an otherwise beneficial side-contract if he suspects that a

counterparty to the side-contract has an ulterior motive (e.g., a side-contract with a

third party) that makes participation in the side-contract detrimental for the agent.

We relax the assumption mentioned above by developing a new, weaker, stability

notion, which we shall refer to as weak stability. Weak stability incorporates consid-

erations from the Nash equilibrium refinements literature into a concept of stability

in the spirit of cooperative game theory. Under this notion, each side-contract can be

viewed as if it were initiated by one of the deviating parties, say, agent i. An agent j

who receives an offer to take part in this deviation conjectures what other deviation

agent i may have initiated (with other agents) since it would have an effect on the

attractiveness of i’s offer. The only restriction we impose on agent j’s conjecture is

that it must rationalise the observed offer. We refer to such a conjecture as a permis-

sible conjecture. Under weak stability, agent j rejects agent i’s offer if there exists a

permissible conjectured deviation that makes it detrimental for j to accept it.

Our main result is that, under mild domain restrictions, weakly stable collections

of contracts are not constrained-efficient. We show that weakly stable collections of

contracts exist, but that the contractual externalities constrain the agents’ ability to

transfer risk. It is worth pointing out that weak stability is defined by using conservative

restrictions on the deviating agents’ beliefs. If instead we were to use a stronger set

of restrictions, then the amount of risk that could be transferred in a weakly stable

collection of contracts would be even lower.

We present two applications in which we examine the implications of contractual

externalities on the volume of trade. In both applications, we focus on collections that

are robust to single and pairwise deviations (i.e., we restrict attention to bilateral side-

contracts). In the first application, we study a reinsurance market in which external

1Similar assumptions are inherent in prominent stability notions that focus on one deviation at a
time in the contexts of matching and network formation (e.g., Jackson and Wolinsky, 1996).
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reinsurers provide coverage to primary insurers who are exposed to an aggregate shock.2

We assume that only some of the primary insurers can manipulate the contractible vari-

able and interpret the share of manipulators as a proxy for the level of corruption in the

economy. For example, a high proportion of manipulators corresponds to an economy

in which “revolving doors” between the public and private sectors are widespread. We

derive a closed-form solution to the maximal level of risk-sharing that can be sustained

by means of a weakly stable collection of contracts and show that it can be significantly

lower than the constrained-efficient level of risk-sharing.

The second application studies speculative trade among risk-neutral speculators.

Under an assumption that the economy is composed of two equally sized groups of

optimistic and pessimistic agents, we derive a closed-form solution to the maximal

volume of trade that can be sustained by means of a weakly stable collection of contracts

and show that it is increasing when the agents’ prior beliefs become more polarised.

This is different from the case of bilateral speculative trade, in which the magnitude of

the difference between the agents’ beliefs has no effect on the volume of trade.

In both applications, the main message is that the maximal level of risk-sharing is

U-shaped in the share of agents who can manipulate the contractible variable. That is,

when corruption becomes more widespread in the economy, its effect on the maximal

volume of trade is nonmonotone.

Related literature

This article is related to the risk-sharing networks literature. Bramoullé and Kranton

(2007a,b) study network formation models in which agents mitigate risk by sharing

their holdings with linked partners. In these models, the agents trade off between costly

link formation and better risk-sharing. Bloch, Genicot, and Ray (2008) and Ambrus,

Mobius, and Szeidl (2014) consider moral hazard in risk-sharing networks. In these

models, ex post, agents who are supposed to make a transfer can deviate by refusing

to do so. An agent who deviates loses some of his risk-sharing links. Bloch, Genicot,

and Ray (2008) characterise stable risk-sharing networks while Ambrus, Mobius, and

Szeidl (2014) study the extent and structure of risk-sharing.

Our work contributes to the literature on collusion. Laffont and Martimort (1997,

2000) develop a framework that incorporates collusion-proofness into mechanism de-

sign. In their models (as well as in Che and Kim, 2006), a fictitious third party

2Reinsurance instruments (e.g., catastrophe bonds) are often conditioned on state-dependent signals
in order to avoid moral hazard in underwriting and claim settlements (see Doherty, 1997).
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coordinates the side-contracts between the colluding agents. Earlier work on this topic

focuses on the Vickrey–Clarke–Groves mechanism’s vulnerability to collusion (Green

and Laffont, 1979; Crémer, 1996). Bierbrauer and Hellwig (2016) show that coalition-

proof mechanisms for public good provision that satisfy a robustness condition take

the form of a voting mechanism. The implications of potential collusion have also been

studied in the contexts of organisations (Tirole, 1986, 1992; Baliga and Sjöström, 1998;

Mookherjee and Tsumagari, 2004; Celik, 2009) and auctions (Graham and Marshall,

1987; Jehiel and Caillaud, 1998; Marshall and Marx, 2007).

In this paper, contracts are contingent on a manipulable variable. Eliaz and Spiegler

(2007, 2008, 2009) take a mechanism design approach to situations in which agents are

motivated to bet on the state due to differences in their prior beliefs. In these mod-

els, the state is not verifiable and the agents can manipulate the contractible variable

(a profile of actions) by incurring some cost. The ability to manipulate this variable

creates incentive constraints that restrict the betting stakes. In Kahn and Mookherjee

(1998), an insuree who is exposed to a private shock can purchase coverage from mul-

tiple insurers, where insurance contracts are negotiated sequentially according to an

exogenously given protocol. Since there is no exclusive dealership and overinsurance

may affect the insuree’s incentives to exert effort (which in turn affects the contracts’

outcomes), some insurers may be reluctant to provide the insuree with coverage.

Weak stability is related to farsighted-stability notions (see, e.g., Harsanyi, 1974;

Chwe, 1994; Ray and Vohra, 2015) that characterise outcomes immune to deviations

by players who recognise that their own deviations may trigger a chain of deviations by

other players. In particular, in the context of network formation, pairwise farsighted-

stability notions (e.g., Herings et al., 2009, 2019) have been used to extend Jackson

and Wolinsky’s (1996) notion of pairwise stability.3

Farsighted stability differs from weak stability in several aspects. First, under far-

sighted stability, deviations are deterred by potential future deviations. Second, under

farsighted stability, the identity of the agent who initiates the deviation has no effect on

the other agents’ beliefs. Finally, pairwise farsighted-stability notions typically assume

that deviations are observable to agents who are not part of the deviating coalition

(e.g., they allow a deviation by a pair of agents (i, j) to trigger an additional deviation

by a pair of agents k 6∈ {i, j} and l 6∈ {i, j}).
The paper proceeds as follows. We present the model in Section 2 and analyse it

3Page et al. (2005) offer a different approach (that allows for deviations by coalitions of any size)
to farsighted stability in networks.
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in Section 3. In Section 4, we restrict attention to bilateral side-contracts. In Section

5, we study two applications of the model and Section 6 concludes. All proofs are

relegated to Appendix A.

2 The Model

There is a set of agents I = {1, ..., n}, n > 2, and a set of states Θ = {L,H}. Each

agent i ∈ I assigns probability πi to the event that state H will be realised. We

denote i’s wealth in state θ by wi(θ). Let S = {l, h} be a set of signals that perfectly

reveal the state unless there is some manipulation (the term “manipulation” will be

clarified soon). We use s(θ) to denote the signal that results in state θ when there is

no manipulation and, without loss of generality, assume that s(H) = h and s(L) = l.

Each agent i’s preferences are represented by a concave and increasing vNM function

ui : R→ R.

State-contingent contracts are not feasible. Instead, agents can write signal-contingent

contracts. A multilateral contract gK : S → R|K|−1 sets budget-balanced transfers

among the members of K ⊆ I contingent on the signal. We denote by gKi (s) the trans-

fer to agent i ∈ K when the signal is s. A bilateral contract bij : S → R sets a transfer

bij (s) from agent j to agent i contingent on the signal. Note that bij(s) = g
{i,j}
i (s). We

use B to denote the collection of contracts signed by the agents and B to denote the

set of such collections. The collection B + gK is obtained by adding the contract gK

to B and the collection B − gK is obtained by dropping gK ∈ B from B. For every

B ∈ B, we use GB to denote the multilateral contract that sums the transfers in B.

The timeline in the model is as follows. First, agents write signal-contingent con-

tracts. After the contracting stage, a state is realised and the agents observe it. Sub-

sequently, there is a manipulation stage in which some of the agents can try to affect

the signal’s realisation. Finally, agents receive transfers according to the contracts that

they have signed and the signal that results from the manipulation stage.

The manipulation stage. After a state θ is realised and observed, each agent i ∈
M ⊆ I can unilaterally change the signal from s(θ) to s′ 6= s(θ) by paying a cost of

c > 0. Let σ : B×Θ→ S be a manipulation function such that σ(B, θ) is the realisation

of the signal at the end of the manipulation stage given a collection B and a state θ.

For every collection of contracts B, let PM (B) =
{
m ∈M |c < |GB

m (h)−GB
m (l) |

}
be the set of potential manipulators. We say that B is incentive compatible (IC) if

PM(B) = ∅. In such cases, there is no manipulation and σ(B, θ) = s(θ) in every state
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θ ∈ Θ.

If |PM(B)| = 1, then there is only one agent i ∈M with an incentive to manipulate

the signal. If s(θ) does not match i’s preferred realisation, then he will manipulate the

signal and incur a cost of c. When |PM(B)| > 1, multiple agents have an incentive

to manipulate the signal or to prevent others from doing so, as different agents may

prefer different realisations. We now make two substantive assumptions about the

signal that results from the manipulation stage and the cost of determining it when

|PM(B)| > 1. These assumptions are inspired by the idea of truthful equilibria in menu

auctions, which was developed by Bernheim and Whinston (1986) and later applied in

the context of lobbying and economic influence (see, e.g., Grossman and Helpman,

1994; Dixit et al., 1997).

The first assumption is that if all members of PM(B) prefer one realisation to the

other, then they manipulate the signal to that realisation when necessary (e.g., when

the state is H and their preferred realisation is l) and one of them incurs a cost of c.

If there is no manipulation (i.e., when σ(B, θ) = s(θ)), no cost is incurred.

Assumption 1 For every signal s′ ∈ S and every collection B ∈ B such that PM (B) 6=
∅ and GB

m (s′) > GB
m (s′′) for every agent m ∈ PM (B):

• σ(B, θ) = s′ for every θ ∈ Θ.

• If σ(B, θ) 6= s(θ), then there is an agent i ∈ PM(B) who incurs a cost of c in

addition to the transfer GB
i (σ(B, θ)) he obtains.

The second assumption pertains to cases where there is a conflict of interest among

the potential manipulators: some of them prefer the signal s′ and the others prefer

s′′ 6= s′. We assume that if the potential manipulators who prefer realisation s′′ have

greater exposure to the signal than the potential manipulators who prefer realisation

s′, then the former impose their preferred realisation and incur a cost equal to the total

exposure of the potential manipulators who prefer the other realisation. We assume

that ties are broken in favour of h. For completeness, we assume that each potential

manipulator pays a cost proportional to his exposure to the signal (our results are not

sensitive to the particular sharing rule).

Assumption 2 For every signal s′, state θ, and collection of contracts B ∈ B such that

there are two agents i, j ∈ PM(B) for whom GB
i (s′′) > GB

i (s′) and GB
j (s′′) < GB

j (s′):
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• σ(B, θ) = h if and only if
∑

i∈PM(B)(G
B
i (h)−GB

i (l)) ≥ 0.

• If σ(B, θ) = s′′, then each agent i ∈ {i′ ∈ PM(B)|GB
i′ (s

′′) > GB
i′ (s

′)} incurs a

cost of∑
j∈{i′∈PM(B)|GB

i′ (s
′)>GB

i′ (s
′′)}(G

B
j (s′)−GB

j (s′′))(GB
i (s′′)−GB

i (s′))∑
j∈{i′∈PM(B)|GB

i′ (s
′)<GB

i′ (s
′′)}(G

B
j (s′′)−GB

j (s′))

in addition to the transfer GB
i (s′′) he obtains.

Our approach in the present paper is to make elementary assumptions on how the

signal is set and who incurs the cost of setting it. Alternatively, one can model the

interaction at the manipulation stage as a noncooperative game. That is, one can

commit to a specific game form and analyse its equilibria. Note that for a given game

form, different collections of contracts may induce very different payoff functions as in

other models of pregame contracting (see, e.g., Jackson and Wilkie, 2005). Further,

since the set of manipulators can be a proper subset of the set of agents and we impose

no constraint on the risk-sharing agreements, there are virtually no restrictions on the

different payoff functions that can be induced by different collections of contracts.

For each i ∈ I, we use �i to denote i’s indirect preferences over collections of con-

tracts. The indirect preferences take ex-post manipulation into account. For example,

suppose that B is IC and that PM (B′) = {j} and GB′
j (h)−GB′

j (l) > c. For i ∈ I−{j},
B′ �i B if and only if

πiui
(
wi (H) +GB

i (h)
)

+ (1− πi)ui
(
wi (L) +GB

i (l)
)

< πiui

(
wi (H) +GB′

i (h)
)

+ (1− πi)ui
(
wi (L) +GB′

i (h)
)
.

Note that in the expression on the RHS, agent i obtains GB′
i (h) in both states since

σ(B′, L) = h. For i = j, B′ �i B if and only if

πiui
(
wi (H) +GB

i (h)
)

+ (1− πi)ui
(
wi (L) +GB

i (l)
)

< πiui

(
wi (H) +GB′

i (h)
)

+ (1− πi)ui
(
wi (L) +GB′

i (h)− c
)
.

Observe that the manipulation cost c is taken into account only in state L, when j

manipulates the signal. A collection of contracts B is said to be individually rational

(IR) if each agent i ∈ I prefers signing all of his contracts to not signing any contract.

Following is the notion of efficiency that we use throughout the paper.
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Definition 1 A collection of contracts B is said to be constrained-efficient if it is IR,

IC, and is not Pareto-dominated by another IC collection of contracts.

3 Analysis

In this section, we present a notion of robustness against side-contracts, which we shall

refer to as multilateral stability. Then, we show that IC multilaterally stable collections

of contracts do not exist in two settings. This leads us to define a weaker notion of

stability, which we shall refer to as weak stability. Finally, we show that weakly stable

collections of contracts exist and that they are not constrained-efficient.

3.1 Multilateral Stability

Since signing a contract requires mutual consent, we study collections of contracts that

are robust to both unilateral and multilateral deviations. We adopt a cooperative

approach since it allows us to refrain from making assumptions about the process

whereby contracts are negotiated. The following notion of stability is inspired by the

network formation literature (see Jackson and Wolinsky, 1996).4

Definition 2 A collection of contracts B is said to be multilaterally stable if the fol-

lowing two conditions are met:

• There exists no contract gK ∈ B and agent i ∈ K such that B − gK �i B.

• There exists no contract gK 6∈ B such that B + gK �i B for every i ∈ K.

Multilateral stability requires that there be no agent who benefits from cancelling one

of the contracts that he has signed, and that there be no group of agents who benefit

from signing a new contract between them. When a group of agents K ⊆ I writes a

contract gK and adds it to B, we refer to gK as a side-contract. A group of agents

can write a side-contract in order to provide each other with additional insurance or to

incentivise one of them to manipulate the signal ex post.

4There are two differences between the present stability notion and Jackson and Wolinsky’s notion.
First, Jackson and Wolinsky’s notion refers to single and bilateral deviations whereas the present
notion allows also for multilateral deviations. Second, Jackson and Wolinsky’s pairwise stability refers
to binary links whereas, in the present paper, contracts are budget-balanced transfers.
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Discussion: Side-contracts

We wish to stress that side-contracts are signal-contingent transfers just like any other

contract. In particular, when a group of agents K write a side-contract gK with the

intention that j ∈ K will manipulate the signal ex post, j’s manipulation is not part of

the side-contract officially (as such a clause would be difficult to enforce in the settings

considered in this paper). Thus, for j to manipulate the signal ex post, the side-contract

gK must create the right incentives for it to be in j’s interest to do so.

To see how two agents can use a side-contract to incentivise one of them to manip-

ulate the signal without the manipulation officially being part of the contract, consider

Example 1 and suppose that Alice and Bob receive a coverage of 90 dollars each, that

is, GB
Alice(l) − GB

Alice(h) = 90 = GB
Bob(l) − GB

Bob(h). As we showed in the Introduc-

tion, they can benefit from writing a side-contract in which Bob pays Alice a small

ε > 0 if and only if the appraiser’s appraisal is l. This side-contract incentivises Alice

to bribe the appraiser in state H (as the cost of doing so is 90 while the benefit is

GB
Alice(l) − GB

Alice(h) + ε = 90 + ε), thereby guaranteeing Bob’s preferred appraisal l.

Observe that the side-contract between Alice and Bob is contingent on the appraisal

rather than on whether Alice bribes the appraiser or not. Thus, if Alice’s original cov-

erage were 80 instead of 90, then she would not bribe the appraiser in state H as the

benefit from doing so would be only 80 + ε < 90.

We now study two settings: speculative trade among risk-neutral agents and risk-

sharing among risk-averse agents. In the first setting, agents trade to increase their

exposure to the state because of the difference in their prior beliefs. In the second

setting, agents trade to reduce their exposure to the state because of their risk aversion.

In both of these settings there exists no collection of contracts that is both IC and

multilaterally stable. These results demonstrate the instability inherent in settings

where individuals write contracts contingent on a manipulable variable.

Proposition 1 Suppose that n > 3, that all agents are risk-neutral, and that for any

pair of agents i and j it holds that πi 6= πj. Then, there exists no collection of contracts

that is both IC and multilaterally stable.

Proposition 1 establishes that trade motivated purely by different prior beliefs can-

not result in a collection of contracts that is both IC and multilaterally stable. The

proof shows that if B is not constrained-efficient, then there are two agents who are
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better off writing a side-contract that increases their exposure to the signal. If B is

constrained-efficient, then the agents’ exposure to the signal must be high such that

there is a pair of agents who are better off writing a side-contract that incentivises one

of them to manipulate the signal ex post. That is, there are two agents who find it

beneficial to collude to manipulate the signal ex post.

The next proposition considers a risk-sharing economy in which the agents’ primary

goal is to reduce their exposure to the state. We impose two mild domain restrictions.

We refer to the first restriction as richness. In our model, there are four possible “types”

of agents: manipulators or nonmanipulators with positive or negative initial exposure

to the state, where agent i’s initial exposure is wi (H)−wi (L). A rich economy contains

at least one agent of each type.

Definition 3 The economy is said to satisfy richness if there are two agents m,m′ ∈M
such that wm (H)−wm (L) > 0 > wm′ (H)−wm′ (L) and two agents i, i′ 6∈M such that

wi (H)− wi (L) > 0 > wi′ (H)− wi′ (L).

Note that richness rules out purely aggregate shocks (see, e.g., Example 1). We shall

relax richness and study aggregate shocks in Section 5.

We refer to the second restriction as nontriviality. Essentially, nontriviality is an

assumption that the manipulation cost is lower than the initial exposure (in absolute

value) of at least two manipulators. Since the agents’ primary goal here is to reduce

their exposure to the state, if the manipulation cost is very high with respect to the

agents’ initial exposure to the state, manipulation becomes irrelevant and the model

collapses to a conventional risk-sharing economy.

Definition 4 The economy is said to satisfy nontriviality if there exist two agents

m,m′ ∈M such that wm (H)− wm (L) ≥ c and wm′ (L)− wm′ (H) ≥ c.

Proposition 2 For each i ∈ I, let πi = π ∈ (0, 1) and let ui be strictly concave. If

nontriviality and richness are satisfied, then there exists no collection of contracts that

is both IC and multilaterally stable.

The proof of Proposition 2 shows that if a collection B provides inefficient insurance,

then there is always at least one pair of agents who are better off coinsuring. The proof

also shows that if B is constrained-efficient, then the agents’ exposure to the signal is

high such that there is at least one pair of agents who are better off writing a side-

contract that incentivises one of them to manipulate the signal ex post; i.e., there are

two agents who benefit from colluding to manipulate the signal ex post.
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Note that in both of the above settings, given an IC collection of contracts, there

is at least one pair of agents who benefit from writing a bilateral side-contract. This

implies that even if we were to use a pairwise stability notion instead of a multilateral

stability one, the impossibility results of Propositions 1 and 2 would hold.

The impossibility results follow from the fact that multilateral stability implicitly

assumes that whenever a side-contract is beneficial for a group of agents, they will sign

it. This assumption can be problematic when there are contractual externalities as the

attractiveness of a side-contract is affected by the existence of side-contracts between

other agents. For example, an agent j may refuse to sign an otherwise beneficial side-

contract if he suspects that a counterparty to the deviation, who has already shown a

tendency to steer away from the norm, has an ulterior motive that makes participating

in the original deviation detrimental for j.

3.2 Weak Stability

We now develop a weaker stability notion that relaxes the above implicit assumption

and takes into account suspicion of agents who initiate deviations from the original set

of contracts. The idea underlying weak stability is that for a side-contract gK to be

signed it must be initiated by one of the contracting parties. An agent j ∈ K who

is approached by the initiator will refuse to sign gK if he suspects that the initiator

initiated an additional deviation (with agents other than j) that makes signing gK

detrimental for j. A side-contract gK will not violate the weak stability of B if for any

agent i ∈ K who may initiate gK there is an agent j ∈ K −{i} who will suspect i and,

therefore, refuse to participate in the side-contract.

Before we formally define weak stability and explain what makes an agent suspect

the initiator of a deviation, we present an example in which healthy suspicion of the

initiator’s motivation is relevant.

Example 2. Let I = {1, ..., 8}, π1 > ... > π8, ui (z) = z for each i ∈ I, and M =

{1, 2, 3, 6, 7, 8}. The table summarises the agents’ transfers in a collection B.

Agent 1 2 3 4 5 6 7 8

GB
i (h)−GB

i (l) c c c 0 0 −c −c −c

We present two side-contracts that violate the multilateral stability of B. The first

side-contract is a bet between agents 4 and 5. We show that when this bet is initiated
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by agent 4, agent 5 has reason to suspect that agent 4 signed an additional side-contract

with agent 3, thereby incentivising agent 3 to manipulate the signal ex post.

Suppose that agent 4 initiates a side-contract b45 such that b45 (h) > 0 > b45 (l).

Agent 5 might suspect that agent 4 has initiated another side-contract b34 such that

b34 (h) = ε > 0 = b34 (l), that is, a deviation in which agent 4 incentivises agent 3 to

manipulate the signal from l to h by paying him ε > 0 if and only if the realised signal

is h. Note that B + b34 + b45 �4 B + b34 (i.e., given b34, adding the contract b45 makes

agent 4 better off). Agreeing to b45 exposes agent 5 to a negative externality imposed

by agent 3’s manipulation of the signal as a result of b34. Thus, given b34, agent 5 is

worse off agreeing to b45.

We now present a second deviation in which agents 6 and 7 write a side-contract

with the intention that agent 7 will manipulate the signal from h to l in state H. When

agent 6 initiates this side-contract, agent 7 may suspect that agent 6 has an ulterior

motive in the form of an additional side-contract with agent 8 that incentivises agent

6 to manipulate the signal himself. That is, agent 7 may suspect that agent 6 is using

their side-contract b76 to make agent 7 manipulate the signal and pay the manipulation

cost instead of doing so himself. In other words, agent 7 may suspect that agent 6 is

trying to free-ride on him.

Suppose that agent 6 initiates a side-contract b76 such that b76 (l) = ε > 0 = b76 (h).

This side-contract incentivises agent 7 to manipulate the signal to l in state H. Agent 7

may suspect that agent 6 has also initiated a side-contract b68 such that b68 (s) = b76 (s)

for each s ∈ S. Observe that GB
6 (l)−GB

6 (h) + b68 (l)− b68 (h) = c+ ε > c. Assumption

1 implies that σ(B+ b68, θ) = σ(B+ b68 + b76, θ) = l for each θ ∈ Θ. While the realised

signal is the same whether or not agent 7 agrees to b76, agreeing to b76 makes agent 7

pay the cost of manipulation instead of agent 6 paying it. If ε is small relative to c,

agent 7 is worse off agreeing to agent 6’s offer to deviate. Moreover, when ε is small

relative to c, B+b68 +b76 �6 B+b68 since agent 6 does not pay for manipulation under

B + b68 + b76. Thus, the side-contract b76 that agent 7 observes can be rationalised by

a conjecture that 6 signed an additional side-contract b68.

We now develop a notion of stability that takes into account the suspicion motive

presented above. Given a collection B, a side-contract gK , and an initiator i ∈ K, agent

j ∈ K−{i} can form a conjecture about an additional deviation by agent i. Specifically,

agent j’s conjecture can be either that agent i signed a new side-contract gK
′

such that

i ∈ K ′ and j 6∈ K ′, or that he unilaterally cancelled an existing contract gK
′ ∈ B such

13



that i ∈ K ′ and5 j 6∈ K ′. We denote agent j’s conjecture by βj(B, g
K , i). In the former

case, βj(B, g
K , i) = gK

′
and in the latter case βj(B, g

K , i) = −gK′ . We denote by

β−1j (B, gK , i) agent i’s counterparties to the conjectured deviation βj(B, g
K , i). Since

we keep the collection of contracts fixed throughout the analysis, we shall omit the

collection of contracts from the description of a conjecture and write βj(g
K , i) instead

of βj(B, g
K , i).

We say that the conjecture βj(g
K , i) blocks the side-contract gK if B + βj(g

K , i) �j
B + βj(g

K , i) + gK . The notion of blocking applies to conjectured side-contracts as

well. That is, the conjecture βk(g
K′ , i) blocks the conjecture βj(g

K , i) if βj(g
K , i) = gK

′
,

k ∈ K ′ − {i}, and B + βk(g
K′ , i) �k B + βk(g

K′ , i) + gK
′
. Note that a cancellation of a

contract cannot be blocked as it does not require mutual consent.

We shall refine the set of conjectures agent j can form by introducing a mild consis-

tency requirement. Agent j’s conjecture βj(g
K , i) is consistent if the addition of gK to

B + βj(g
K , i) makes the initiator, agent i, better off. In other words, agent j’s conjec-

ture is consistent with the offer he observes if it can rationalise it. As an illustration,

consider the first deviation presented in Example 2, b45. As we showed in the example,

B+ b34 + b45 �4 B+ b34 and, therefore, the conjecture β5(b45, 4) = b34 is consistent with

an offer to sign the side-contract b45 made by agent 4.

Definition 5 A conjecture βj(g
K , i) is consistent if B+βj(g

K , i)+gK �i B+βj(g
K , i).

Consistency assumes that an agent who receives an offer to deviate takes into ac-

count the proposer’s motivation. However, the receiving agent might want to take into

account other agents’ motivations as well. For example, imagine that agent i offers

agent j the opportunity to sign a bilateral side-contract bij and consider a bilateral

side-contract bik such that the conjecture βj(bij, i) = bik is consistent. Should agent j

form such a conjecture? Since side-contracts require mutual consent, the answer de-

pends on whether agent j thinks that agent k is willing to sign bik. Let us assess k’s

willingness to sign bik. If k can come up with a consistent conjecture βk(bik, i) that

blocks bik, then k might refuse to sign bik. Again, since side-contracts require mutual

consent, k’s decision may depend on whether he thinks that i’s counterparties to his

conjectured deviation, β−1k (bik, i), are willing to participate in it. This process can be

iterated over and over again. Thus, assessing whether k is willing to sign bik requires j

to take the motivations of all the other agents into account.

5In addition, agent j is also allowed to conjecture that agent i is not engaged in an additional
deviation. We use βj(B, g

K , i) = ∅ to denote such a conjecture.
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We now complete the presentation of our stability notion by describing how each

agent takes all the other agents’ motivations into account. Under our notion, an agent

rejects an offer to sign a side-contract if (i) there is a consistent conjecture that blocks

it, and (ii) this consistent conjectured deviation is not blocked by any other consistent

conjecture, which itself is not blocked by any other consistent conjecture, and so on ad

infinitum. We refer to consistent conjectures that satisfy (ii) as permissible.

Definition 6 For every collection B ∈ B, side-contract gK, and agents i, j ∈ K, let

A0
j(B, g

K , i) be the set of consistent conjectures βj(g
K , i) that i cancelled a contract

gK
′ ∈ B such that i ∈ K ′ and j 6∈ K ′. For every t > 0, let Atj(B, g

K , i) be the set of

consistent conjectures βj(g
K , i) that satisfy the following condition:

• If there exists an agent k ∈ β−1j (gK , i) and a consistent conjecture βk(βj(g
K , i), i)

that blocks βj(g
K , i), then there is some agent z ∈ β−1k (βj(g

K , i), i) and a conjec-

ture βz(βk(βj(g
K , i), i), i) ∈ ∪t−1x=0A

x
z(B, βk(βj(g

K , i), i), i) that blocks βk(βj(g
K , i), i).

A conjecture βj(g
K , i) is said to be permissible if βj(g

K , i) ∈ ∪∞t=0A
t
j(B, g

K , i).

Since the conjectures in A0
j(B, g

K , i) cannot be blocked, consistency is sufficient for

permissibility in this case. This enables us to construct the set of permissible conjectures

in a unique manner. The construction of the set of permissible conjectures guarantees

that a permissible conjecture can never be blocked by another permissible conjecture.

This property corresponds to internal consistency in von Neumann-Morgenstern stable

sets (see von Neumann and Morgenstern, 1944).

Definition 7 A collection of contracts B is said to be weakly stable if the following

two conditions are met:

• There exists no contract gK ∈ B and agent i ∈ K such that B − gK �i B.

• For every side-contract gK 6∈ B such that B + gK �i B for some i ∈ K, there

exists an agent j ∈ K−{i} and a permissible conjecture βj(g
K , i) that blocks gK.

Note that weak stability requires that every side-contract be blocked for any agent

who initiates it. For instance, if B+ bij �i B and B+ bij �j B, then the weak stability

of B requires that the side-contract bij be blocked both by a permissible conjecture

βj (bij, i) and by a permissible conjecture βi (bij, j). Thus, the same side-contract can

be treated differently when the identity of its initiator is different.
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Discussion: Solution concept

Alternative stability notions. Let us consider the possibility of using a few “off the

shelf” notions of stability. For example, when considering multilateral deviations, it

is natural to think of cooperative notions such as the core or the Aumann–Maschler

bargaining set (Aumann and Maschler, 1964). However, such notions cannot be used

to examine the effect of adding new contracts to an existing set of contracts as the

idea underlying such notions is that coalitions deviate to a state of autarchy. This is

also the idea underlying the self-enforcing risk-sharing agreements in Genicot and Ray

(2003). Concepts such as strong Nash equilibrium (Aumann, 1959), coalition-proof

Nash equilibrium (Bernheim et al., 1987), and coalitional rationalisability (Ambrus,

2006) can capture the idea that a coalition of agents deviates whereas agents who

are not members of the deviating coalition do not change their behaviour. However,

since these concepts are noncooperative, they require strong assumptions about the

way contracts and deviations are negotiated. Moreover, the existence of a strong Nash

equilibrium or a coalition-proof Nash equilibrium is not guaranteed.

Robustness. Our stability notion assumes that agents form “pure” conjectures. In

the Supplementary Appendix, we show that the results do not depend on this as-

sumption. In fact, we show that a collection of contracts is weakly stable when mixed

conjectures are allowed, if and only if it is weakly stable when mixed conjectures are

not allowed.

Our stability notion also assumes that agents form conjectures of a single deviation.

We can extend this notion by allowing agents to form conjectures of multiple deviations.

For example, an agent who is approached by another agent i could entertain a belief that

agent i initiated two additional side-contracts, each with a different group of agents.

While this extension is beyond the scope of this paper, it is possible to show that it

would not change any of our results.

Relation to the Nash equilibrium refinements literature. Underlying the notion of

consistency is a forward-induction logic in the spirit of a strand of the Nash equilibrium

refinements literature and, in particular, the intuitive criterion (Cho and Kreps, 1987).6

The intuitive criterion is built on a forward-induction argument that restricts the beliefs

of an agent who receives a message off the equilibrium path. Specifically, the receiver’s

belief can assign positive probability only to types of senders who can obtain a payoff

strictly higher than their equilibrium payoff by sending the off-path message under the

6Pomatto (2019) applies similar arguments to test the stability of two-sided matchings.
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assumption that the receiver best responds to any belief.

The consistency requirement applies a similar logic to refine the beliefs of an agent

who receives an offer to deviate from the existing collection of contracts. To see the

analogy, note that the existing collection can be interpreted as an equilibrium, an

offer to sign a side-contract can be interpreted as an off-path message by the proposer

(initiator), the additional deviation by the proposer can be viewed as his “type,” and

the offer’s receiver’s conjecture can be interpreted as his belief about the proposer’s

type. Essentially, consistency restricts the receiver to pure conjectures that assign

positive probability only to types of initiators who can strictly benefit from offering the

side-contract.

3.2.1 Main Results

In this subsection, we provide the main results of the paper. First, Proposition 3 shows

that weakly stable collections exist. Second, Proposition 4 establishes that under mild

domain restrictions weakly stable collections are not constrained-efficient.

Proposition 3 If |M | > 2, then there exists an IR, IC, and weakly stable collection of

contracts.

In the proof, we construct a collection of contracts B and show that it is weakly

stable. Each agent’s transfers in B sum to zero, which makes it IC and IR by def-

inition.7 Note, however, that the collection constructed in the proof is not the null

contract. In fact, the agents’ ability to unilaterally cancel previously signed contracts

plays an important role in this proof: agents reject otherwise beneficial offers to sign

side-contracts based on a suspicion that their counterparties to the side-contracts can-

celled a previously signed contract.

The collection B is constructed such that for any side-contract gK that makes an

agent i ∈ K better off, one of i’s counterparties to the deviation, agent k, has a

permissible conjecture that i cancelled a previously signed contract g ∈ B that blocks

gK . Cancelling g induces manipulation (not necessarily by i) that makes it detrimental

for k to sign gK . The main challenge in the construction of B is to balance between the

requirement that k’s conjecture be permissible and the requirement that B − g 6�i B,

which is necessary to satisfy the first requirement of weak stability.

7If we were to consider a collection of contracts in which agents’ transfers do not sum to zero, then
it would be impossible to determine whether or not the collection is IR without making additional
assumptions about the agents’ preferences, beliefs, and endowments.
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The next proposition emphasises the tension between stability and efficiency in

the context of a conventional risk-sharing economy. It shows that despite the weak

requirements of the solution concept, under fairly general conditions, there exists no

collection of contracts that is both weakly stable and constrained-efficient.

Proposition 4 Let richness and nontriviality hold and suppose that πi = π ∈ (0, 1)

and ui is strictly concave for each i ∈ I. If a collection of contracts B is constrained-

efficient, then it is not weakly stable.

The proof relies on Lemma 2, which describes a side-contract that cannot be blocked

by any consistent conjecture. In this side-contract, an agent who can manipulate the

signal colludes with an agent who cannot do so to set the signal to their preferred

realisation ex post. In the collusive side-contract, the agent who cannot manipulate the

signal makes positive signal-contingent payments to the manipulator that incentivise

the latter to manipulate the signal ex post, if necessary. In the proof, we show that if

B is constrained-efficient, then there exists such a collusive side-contract that makes

both counterparties better off.

The fact that the above deviation involves agents with heterogeneous strategic ca-

pabilities plays a key role. In particular, it is important that the deviation is initiated

by an agent who cannot manipulate the signal as it restricts the set of conjectures his

counterparty to the deviation can hold. Intuitively, it is harder for the latter agent to

suspect that the initiator has an ulterior motive when the initiator is not a manipulator.

As an illustration, suppose that agent i offers agent m ∈M the opportunity to sign

a bilateral side-contract that incentivises m to manipulate the signal ex post. If i ∈M ,

then agent m can form a conjecture that agent i is trying to free-ride on him, namely,

trying to make agent m pay the manipulation cost instead of doing so himself (as in the

second deviation in Example 2). If i 6∈M , then agent m cannot form such a conjecture.

Thus, agent i’s inability to manipulate the signal restricts the set of conjectures agent

m can form, which may enable the two agents to collude.

4 Pairwise Weak Stability

So far, we have placed no restriction on the size of the deviating coalition. In this

section, we focus on single and pairwise deviations, in line with the network formation

literature. Another motivation for the focus on single and pairwise deviations is that
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deviations that hinge on the cooperation of a large number of players may be more

difficult to coordinate. We now examine whether the restriction to pairwise deviations

can alleviate the tension between stability and efficiency that was established in the

previous section.

First, we need to adapt our basic notions. Given a collection B and a bilateral side-

contract bij, a conjectured deviation βj(bij, i) can take the form of either the signing

of a new bilateral side-contract bik between agent i and an agent k ∈ I − {i, j} or the

unilateral cancellation of an existing contract gk ∈ B such that i ∈ K and j 6∈ K.

Since we focus on bilateral side-contracts, we can omit the initiator’s label from the

description of a conjecture and write βj(bij) instead of βj(B, bij, i). The notions of

consistency, blocking, and permissibility remain as in the previous section. Following

is the adapted stability notion.

Definition 8 A collection of contracts B is said to be pairwise weakly stable if the

following two conditions are met:

• There is no agent i ∈ I and contract gK ∈ B such that i ∈ K and B − gK �i B.

• For every bilateral side-contract bij such that B+bij �i B there exists a permissible

conjecture βj (bij) that blocks it.

Pairwise weak stability is not necessarily a coarsening of weak stability as these

notions may induce different sets of permissible conjectures (specifically, a conjecture

can be permissible when weak stability is used and not permissible when pairwise

weak stability is used). Nonetheless, the proof of the existence result (Proposition 3)

holds for pairwise weakly stable collections as well. The reason for this effect is that

the conjectured deviations that stabilise the collection of contracts constructed in the

proof are unilateral; i.e., agents reject offers to deviate because they suspect that the

initiator of the deviation cancelled an existing contract.

Pairwise weak stability is not a refinement of weak stability, as the set of admissi-

ble deviations is smaller under pairwise weak stability. Nonetheless, the proof of the

impossibility result (Proposition 4) holds for pairwise weakly stable collections as well.

Essentially, the proof shows that for any constrained-efficient collection of contracts

there exists a bilateral side-contract that destabilises it and cannot be blocked by any

consistent conjecture. Since the set of consistent conjectures under weak stability is a

superset of the set of consistent conjectures under pairwise weak stability, which itself is
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a superset of the set of permissible conjectures under pairwise weak stability, the proof

of Proposition 4 holds. The next corollary summarises the short discussion above.

Corollary 1 Suppose that richness and nontriviality hold. If |M | > 2, then there

exists a collection of contracts that is IR, IC, and pairwise weakly stable. However, if

πi = π ∈ (0, 1) and ui is strictly concave for each i ∈ I, then every constrained-efficient

collection of contracts is not pairwise weakly stable.

5 Applications

We now present two applications of the model. In the first application we study risk-

sharing in a reinsurance market and in the second application we study risk-bearing

when agents are motivated by different prior beliefs. In both applications, the main

messages are that the maximal level of risk that can be transferred by means of pair-

wise weakly stable collections of contracts is nonmonotone with respect to the share of

manipulators and that it can be substantially lower than the constrained-efficient level

of risk-sharing. The focus on pairwise deviations allows us to highlight the latter point

by deriving a closed-form solution to the volume of trade.8

5.1 Reinsurance

We study a reinsurance market in which local insurers who are exposed to a shock

receive coverage from external reinsurers who are not directly exposed to the shock. The

external reinsurers can also be thought of as capital market investors. The signal can be

interpreted as a local governor’s declaration of a state of emergency and manipulation

can be interpreted as lobbying. In practice, reinsurance contracts and instruments

(e.g., catastrophe bonds) are typically contingent on state-dependent signals and not

on actual losses incurred by insurers to prevent moral hazard problems in underwriting

and claim settlements (see Doherty, 1997). We assume that some of the local insurers

can manipulate the contractible variable while the external reinsurers cannot do so, and

interpret the share of local insurers who have the ability to manipulate the contractible

variable as a proxy for the level of corruption in the economy.

8It is possible to show that the amount of risk that can be transferred by means of weakly stable
collections of contracts is lower than the amount of risk that can be transferred by means of pairwise
weakly stable collections of contracts.
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To model this reinsurance market, we partition the set of agents I into a set of

local insurers L and a set of external reinsurers E and assume that M ⊆ L. To

capture the idea that the local insurers are exposed to a high-volume catastrophe, we

set wi (H)− wi (L) = w ≥ c for each i ∈ L. We shall assume that the cardinality of E

is large relative to that of L such that the external reinsurers can absorb all the risk in

the economy. Specifically, we assume that w
c
< |E|
|L| .

To avoid frictions arising from the discreteness of L, we assume that there are many

local insurers and denote the share of manipulators |M ||L| by α. For the sake of tractability,

we assume that the local insurers exhibit constant absolute risk aversion (CARA). That

is, for each i ∈ L, ui (z) = −exp (−γz), γ > 0. To simplify the exposition, it is also

assumed that each i ∈ E is risk-neutral and that w ≤ c+ 1
γ
log(π + (1− π)exp(γw)).

We start the analysis by showing that, unless all the local insurers can manip-

ulate the signal or none can, pairwise weakly stable collections of contracts are not

constrained-efficient. Then, we show that the maximal level of risk that can be shared

by means of such collections is U-shaped in the share of local insurers who can ma-

nipulate the signal and increasing in the agents’ risk aversion. In the Supplementary

Appendix, we provide a closed-form solution to this maximal level, and show that it can

be significantly lower than the level of coverage agents obtain in constrained-efficient

collections of contracts.

The first result of this section is based on an argument similar to the one used in

Proposition 4 and does not rely on the CARA assumption.

Proposition 5 If α ∈ (0, 1), then there exists no collection of contracts that is both

constrained-efficient and pairwise weakly stable.

Proposition 5 shows that, except for extreme values of α, pairwise weakly stable

collections are not constrained-efficient. In the Supplementary Appendix, we show that

for extreme values of α, the amount of risk that can be transferred by means of pairwise

weakly stable contracts coincides with the constrained-efficient level of coverage.

We define insurer i’s coverage asmin
{
GB
i (l)−GB

i (h) , w
}

. Note that our definition

does not allow for over-insurance. As a result, the aggregate level of coverage in a

collection B is
∑

i∈Lmin
{
GB
i (l)−GB

i (h) , w
}

. The next result establishes that the

maximal aggregate coverage the local insurers can obtain by means of a pairwise weakly

stable, IC, and IR collection of contracts is U-shaped in α.
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Proposition 6 Let |M | > 2. There exists an α∗ ∈ (0, 1) such that the maximal

aggregate coverage that can be obtained using an IR, IC, and pairwise weakly stable

collection is increasing in α for α > α∗ and decreasing in α for α < α∗.

The first part of the proof is essentially an application of Lemma 2.9 It shows that in

a pairwise weakly stable collection of contracts there cannot be a pair of local insurers,

m ∈M and i ∈ L−M , such that i is willing to pay more than c− (GB
m(l)−GB

m(h)) to

guarantee the realisation l ex post. If such a pair were to exist, i and m would benefit

from writing a side-contract by which i makes signal-contingent payments to m that

incentivise m to manipulate the signal ex post. The lemma shows that such a collusive

side-contract would violate the pairwise weak stability of the collection. We translate

this restriction to constraint (8).

In the second part of the proof, we solve for the maximal coverage that can be ob-

tained subject to incentive compatibility and (8). We show that under the CARA as-

sumption, the problem is equivalent to maximising a convex combination (with weights

α and 1 − α) of the coverage provided to manipulators and the coverage provided to

nonmanipulators subject to a concave constraint, which yields the U-shaped structure.

In the final part of the proof, we construct an IR collection that induces that maxi-

mal level of coverage and show that there are no additional deviations that violate the

collection’s pairwise weak stability.

Comparative statics: Risk aversion

To examine the effect of risk aversion on the level of coverage, consider the willingness

of an agent i ∈ L−M to pay to guarantee that the signal will be l, z(GB
i (l)−GB

i (h)),

which is given in (6). The more risk averse i is, the less willing he is to pay for

manipulation. To see why, observe that when agent i ∈ L − M incentivises agent

m ∈M to manipulate the signal by paying him x if s = l, it is as if agent i were giving

up on a state-dependent coverage in return for a sure transfer of GB
i (l)−x. When agent

i becomes more averse to risk, the state-dependent coverage becomes more attractive

than the sure transfer, such that i’s willingness to pay for manipulation decreases.

Thus, increasing the agents’ level of risk aversion increases the amount of coverage

nonmanipulators can obtain without violating constraint (8) and thus the collection’s

pairwise weak stability.

9Since the set of consistent conjectures under pairwise weak stability is a subset of the set of
consistent conjectures under weak stability, the proof of Lemma 2 holds when agents are restricted to
bilateral deviations.
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Figure 1: c = 8 Figure 2: c = 10

In the Supplementary Appendix we illustrate the effects of α and γ on the aggregate

coverage by solving the model analytically. The primary goal of the analysis in the

Supplementary Appendix is to show that the adverse effect on the aggregate coverage

is of a first-order magnitude. In Figure 1 we illustrate the maximal average level of

coverage for w = 10, c = 8, |L| = 1000, γ = 0.5, and γ = 1 versus the constrained-

efficient level of coverage. Figure 2 illustrates the results for c = 10, and demonstrates

that even when c = w such that in every constrained-efficient collection of contracts

the agents are fully covered, the maximal level of coverage that can be obtained using a

pairwise weakly stable collection can be significantly lower than the constrained-efficient

level of coverage.

5.2 Speculative Trade

This subsection focuses on reallocation of risk motivated by different prior beliefs. The

signal in this section can be interpreted as an event or as a financial benchmark that the

agents are not directly exposed to. We explore the maximal volume of speculative trade

that can be sustained by means of a pairwise weakly stable, IC, and IR collection of

contracts, and show that it is nonmonotone in the share of agents who can manipulate

the signal and is increasing when the agents’ prior beliefs become more polarised.

To focus on speculation, we assume that all of the agents are risk-neutral. We

impose additional structure on the problem by assuming that there are two types of

agents. These types differ from each other in their prior beliefs, whereas the share

of manipulators in each type of agent is identical. Formally, we partition I into two

disjoint groups of equal size, Ih and I l, and assume that each i ∈ I l has a prior belief
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πl and each i ∈ Ih has a prior belief πh > πl. We assume that |M ∩ Ih| = |M ∩ I l|. To

avoid integer problems, we set α := |M |
|I| .

The volume of speculative trade induced by a collection B is
∑

i∈I |GB
i (h)−GB

i (l) |.
We now derive a closed-form solution to the maximal volume of speculative trade that

can be obtained using IR, IC, and weakly stable contracts. To focus on speculation

motivated by non-common priors (rather than on speculative trade between two mem-

bers of Ih or speculative trade between two members of I l), we restrict our attention

to collections that satisfy the following condition.

Condition 1 A collection of contracts B satisfies Condition 1 if GB
i (h) ≥ GB

i (l) for

each i ∈ Ih and GB
i (l) ≥ GB

i (h) for each i ∈ I l.

Proposition 7 Let α ∈ (0, 1) and |M | > 2. The maximal average volume of specu-

lative trade that can be sustained by means of an IR, IC, and pairwise weakly stable

collection of contracts that satisfies Condition 1 is

max

{
αc, (1− α)min

{
c

1− πh
,
c

πl

}}
. (1)

The maximal volume of speculative trade is U-shaped in the proportion of manip-

ulators. It is weakly increasing in πh and weakly decreasing in πl. That is, when the

agents’ beliefs are more polarised, there is room for more speculative trade.

The intuition behind the nonmonotonicity of the volume of trade w.r.t. α is similar

to the that behind the U-shaped level of coverage obtained in Proposition 6. There

are two differences, however. First, the linearity of the utility functions implies that

the constraint implied by Lemma 2 is linear rather than strictly concave. Thus, in a

collection that maximises the volume of trade, either only nonmanipulators trade or

only manipulators trade. This results in the maximum in expression (1). The second

key difference is that there are no external agents who can absorb the positions of the

members of Ih or I l, which results in the minimum in expression (1).

The effect of polarisation: A comparison to bilateral trade

When n = 2 there are no contractual externalities and so the magnitude of the difference

between the agents’ beliefs has no effect on the volume of trade. If one of the agents

can manipulate the signal, then the volume of trade is 2c as a higher volume would

lead to manipulation. If none of the agents can manipulate the signal, then they will

always want to scale up the stakes of the bets between them.
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When n > 2, agents can collude to manipulate the signal ex post. When GB
i (h)−

GB
i (l) > 0, agent i ∈ Ih is willing to pay (1 − πh)(GB

i (h) − GB
i (h)) to guarantee that

the signal will be h even in state L. Intuitively, the more likely agent i thinks state

H is, the less willing he is to pay for manipulation in state L. Thus, the higher πh

is, the greater the exposure GB
i (h)−GB

i (l) agent i can have without destabilising the

collection of contracts. Analogously for i ∈ I l, the lower πl is, the greater the exposure

GB
i (l) − GB

i (h) agent i can have. We can conclude that the more extreme the agents’

priors are, the less willing the agents are to pay for manipulation, which, all else equal,

enables them to hold a larger speculative position without violating the pairwise weak

stability of the collection of contracts.

6 Concluding Remarks

The present paper studied reallocation of risk by means of contracts that are contingent

on manipulable variables. This manipulability creates a moral hazard problem that

limits the ability of agents who can manipulate the signal to share risk. The reason

for this effect is that other individuals take into account the possibility of ex-post

manipulation and, therefore, are less inclined to share risk with these agents.

The multilateral nature of our setting creates contractual externalities that mag-

nify the moral hazard problem and limit all agents’ ability to share risk, regardless

of whether they can manipulate the signal. In the presence of these externalities, an

agent who is considering whether to share risk with another individual has to take into

account the possibility that this individual will collude with a third party to manip-

ulate the signal ex post. Our analysis shows that the magnitude of the contractual

externalities’ negative effect on the overall level of risk-sharing can be substantial and

may depend on the share of agents who can manipulate the signal nonmonotonically.

Our assumption about the richness of the economy ruled out cases in which only

one agent is exposed to a shock and he is the only one who can manipulate the signal.

Such cases are common in practice. For instance, standard insurance contracts are

typically conditioned on an insuree’s report about the occurrence of the shock. To

incorporate such cases into our framework, we can think of c as the cost of reporting

that a shock occurred when it did not occur and interpret the assumption that n > 2

as the agent’s ability to purchase coverage from multiple insurers. It can be shown

that if the insurers and the agent have the same prior beliefs, then multilaterally stable
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collections of contracts exist and they are constrained-efficient. The reason for this is

that a collusive side-contract that incentivises the agent to manipulate the contractible

variable ex post cannot make any insurer better off. Thus, such a side-contract cannot

violate the multilateral stability of the collection of contracts. On the other hand, a side-

contract in which the agent purchases additional coverage can violate the multilateral

stability of a collection that is not constrained-efficient. Thus, we obtain constrained-

efficient risk-sharing in this case.
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[10] Bramoullé, Y. and Kranton, R. (2007a): “Risk-sharing networks,” Journal of Eco-

nomic Behavior and Organization, 64, 275–294.

26
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Appendix A: Proofs

The proofs of Propositions 1 and 2 rely on the following lemma.

Lemma 1 Let B be an IC collection of contracts. If there exists a pair of agents,

m ∈ M and i 6= m, such that |GB
m (h) − GB

m (l) | = c and sign
(
GB
m (h)−GB

m (l)
)

= sign
(
GB
i (h)−GB

i (l)
)
, then B is not multilaterally stable.

Proof. Without loss of generality, assume that GB
m (h) − GB

m (l) = c and GB
i (h) >

GB
i (l). Consider a side-contract b̂mi such that c ≥ b̂mi (h) > b̂mi (l) = 0. Observe that

GB
m (h) − GB

m (l) + b̂mi (h) > c. If i ∈ M , then it must be that c > GB
i (h) − GB

i (l) −
b̂mi (h) > −c since B is IC. It follows that PM

(
B + b̂mi

)
= {m}. By Assumption 1,

σ(B + b̂mi, θ) = h for every θ ∈ Θ. If b̂mi (h) is sufficiently close to 0, then

πiui(wi(H) +GB
i (h)− b̂mi(h)) + (1− πi)ui(wi(L) +GB

i (h)− b̂mi(h)) >

πiui(wi(H) +GB
i (h)) + (1− πi)ui(wi(L) +GB

i (l))

since GB
i (h) > GB

i (l). Agent m is also better off signing the side-contract b̂mi since

πmum(wm(H) +GB
m(h) + b̂mi(h)) + (1− πm)um(wm(L) +GB

m(h)− c+ b̂mi(h)) =

πmum(wm(H) +GB
m(h) + b̂mi(h)) + (1− πm)um(wm(L) +GB

m(l) + b̂mi(h)) >

πmum(wm(H) +GB
m(h)) + (1− πm)um(wm(L) +GB

m(l)).

Hence, B is not multilaterally stable.

Proof of Proposition 1

First, we consider the case where |I−M | ≤ 1. Assume to the contrary that B is IC and

multilaterally stable, and consider three agents k,m, i ∈M such that πk > πi > πm.

Assume to the contrary that both GB
m (l)−GB

m (h) < c and GB
i (h)−GB

i (l) < c. To

obtain a contradiction to the multilateral stability of B, we construct a side-contract

bmi such that B + bmi �i B and B + bmi �m B. Let bmi (l) = ε and bmi (h) = π̂−1
π̂
ε,

where π̂ ∈ (πm, πi). Since both GB
m (l) − GB

m (h) < c and GB
i (h) − GB

i (l) < c, if
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ε > 0 is sufficiently small, then B + bmi is IC and σ(B + bmi, θ) = s(θ) for every

θ ∈ Θ. Both agents are better off adding bmi to B since − (1− πi) ε− πi π̂−1π̂ ε > 0 and

(1− πm) ε+πm
π̂−1
π̂
ε > 0. This contradicts the multilateral stability of B and, therefore,

it cannot be that both GB
m (l)−GB

m (h) < c and GB
i (h)−GB

i (l) < c. Since B is IC, it

holds that GB
m (l)−GB

m (h) ≤ c and GB
i (h)−GB

i (l) ≤ c. Hence, GB
m (l)−GB

m (h) = c or

GB
i (h)−GB

i (l) = c. By the same argument, GB
i (l)−GB

i (h) = c or GB
k (h)−GB

k (l) = c.

If GB
k (h) − GB

k (l) = c and GB
i (h) − GB

i (l) = c, then, by Lemma 1, B is not

multilaterally stable. Also, if GB
i (h) − GB

i (l) = −c and GB
m (h) − GB

m (l) = −c, then,

by Lemma 1, B is not multilaterally stable. It follows that GB
k (h) − GB

k (l) = c and

GB
m (l)−GB

m (h) = c.

Since n > 3, there is an agent i′ ∈ I − {i,m, k} such that πi 6= πi′ . If GB
i (h) −

GB
i (l) = 0 = GB

i′ (h) − GB
i′ (l), then we can construct a side-contract bii′ (similar

to bmi described above) that makes both i and i′ better off. However, since B is

multilaterally stable, it is impossible to construct such a side-contract and, therefore,

|GB
i (h) − GB

i (l) | > 0 or |GB
i′ (h) − GB

i′ (l) | > 0. Recall that GB
k (h) − GB

k (l) = c and

GB
m (l)−GB

m (h) = c. By Lemma 1, this violates the multilateral stability of B.

To complete the proof, consider the case where |I −M | > 1. Observe that if there

exist two agents i,m 6∈ M such that πi > πm, then there exists a side-contract bmi,

similar to the side-contract bmi described above, such that B+ bmi is IC, B+ bmi �i B,

and B + bmi �m B. Hence, B is not multilaterally stable.

Proof of Proposition 2

Assume to the contrary that B is IC and multilaterally stable. By nontriviality, there

exist two agents m,m′ ∈M such that wm (H)−wm (L) ≥ c and wm′ (L)−wm′ (H) ≥ c.

If GB
m (l)−GB

m (h) < c and GB
m′ (h)−GB

m′ (l) < c, then

wm (H) +GB
m (h)− wm (L)−GB

m (l) > 0 > wm′ (H) +GB
m′ (h)− wm′ (L)−GB

m′ (l) .

In this case, m and m′ would be better off signing a side-contract bmm′ in which they

provide each other with fair insurance (the stakes of the contract bmm′ can be set to be

small such that B + bmm′ is IC and there is no manipulation). It follows that if B is

IC and multilaterally stable, then GB
m (l)−GB

m (h) = c or GB
m′ (h)−GB

m′ (l) = c.

Assume that GB
m (l) − GB

m (h) = c (the case of GB
m′ (h) − GB

m′ (l) = c is symmetric

and omitted for brevity). By Lemma 1, if there exists an agent i 6= m such that

GB
i (l) > GB

i (h), then B is not multilaterally stable. Thus, GB
i (l) ≤ GB

i (h) for each
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i ∈ I − {m}. By richness, there exists an agent i 6∈ M such that wi (H)− wi (L) > 0.

As GB
i (l) ≤ GB

i (h), it follows that wi (H) + GB
i (h) − wi (L) − GB

i (l) > 0. If there

exists an agent j 6∈ M such that wj (H) + GB
j (h) − wj (L) − GB

j (l) < 0, then i and

j are better off writing a side-contract bij in which they provide each other with fair

insurance (note that PM(B + bij) = ∅ since i, j 6∈ M). As B is multilaterally stable,

there exists no such agent j 6∈ M . By richness, there exists an agent j 6∈ M such

that wj (L) > wj (H). Since wj (H) + GB
j (h) − wj (L) − GB

j (l) ≥ 0, it follows that

GB
j (h) > GB

j (l).

By nontriviality, there exists an agent m′ ∈M−{m} such that wm′ (L)−wm′ (H) ≥
c. Since there exists an agent i 6∈ M such that wi (H) +GB

i (h)− wi (L)−GB
i (l) > 0,

the multilateral stability of B implies that GB
m′ (h) − GB

m′ (l) = c (otherwise m′ and i

would be better off writing a side-contract in which they provide each other with fair

insurance without violating the incentive compatibility of the collection of contracts).

In conclusion, there exist an agent m ∈M such that GB
m (l)−GB

m (h) = c, an agent

m′ ∈M such that GB
m′ (h)−GB

m′ (l) = c, and an agent j 6∈M such that GB
j (h) > GB

j (l).

By Lemma 1, this is in contradiction to the multilateral stability of B.

Proof of Proposition 3

In the first step of the proof, we construct a collection of contracts in which the

agents’ transfers sum up to zero. In the second step, we show that it is weakly stable.

For each i 6∈M and each pair of agents j, k ∈M set up three contracts gi,j,k, ĝi,j,k,

and g̃i,j,k such that

• gi,j,ki (h) = −5c

• gi,j,ki (l) = 0

• ĝi,j,ki (h) = 0

• ĝi,j,ki (l) = −5c

• g̃i,j,ki (h) = 5c

• g̃i,j,ki (l) = 5c

• gi,j,kj (h) = −5c

• gi,j,kj (l) = 0

• ĝi,j,kj (h) = 0

• ĝi,j,kj (l) = 10c

• g̃i,j,kj (h) = 5c

• g̃i,j,kj (l) = −10c

• gi,j,kk (h) = 10c

• gi,j,kk (l) = 0

• ĝi,j,kk (h) = 0

• ĝi,j,kk (l) = −5c

• g̃i,j,kk (h) = −10c

• g̃i,j,kk (l) = 5c

Denote the collection of these contracts by B′. In addition, for every pair of agents

i, j ∈M set four bilateral contracts b1ij, b
2
ij, b

3
ij, b

4
ij such that b1ij(h) = −b2ij(h) = b3ij(l) =
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−b4ij(l) = 5c and b1ij(l) = b2ij(l) = b3ij(h) = b4ij(h) = 0. Denote the collection of these

contracts by B′′ and let B = B′ + B′′. Note that GB
i′ (s) = 0 for every s ∈ {h, l} and

i′ ∈ I. Thus, the collection B is IR and IC. We now show that B is also weakly stable.

We start by showing that no agent wishes to cancel a contract unilaterally. Consider

three agents i 6∈ M and j, k ∈ M and a contract gi,k,j ∈ B′. It is possible to see that

PM(B − gi,k,j) = {j, k} and that, since |GB
k (h) − GB

k (l) − gi,k,jk (h) + gi,k,jk (l)| = 10c >

5c = |GB
j (h)−GB

j (l)−gi,k,jj (h)+gi,k,jj (l)|, Assumption 2 implies that σ(B−gi,k,j, θ) = l

for every θ ∈ Θ. Thus, no agent benefits from unilaterally cancelling this contract even

if we do not take the cost of setting the signal into account. The analysis of unilaterally

cancelling ĝi,j,k is symmetric and therefore omitted. Suppose that g̃i,j,k is cancelled. It is

possible to see that PM(B− g̃i,k,j) = {j, k} and that, since |GB
k (h)−GB

k (l)− g̃i,k,jk (h)+

g̃i,k,jk (l)| = 15c = 15c = |GB
j (h) − GB

j (l) − gi,k,jj (h) + gi,k,jj (l)|, Assumption 2 implies

that both agents obtain a net transfer of −5c regardless of the state under B − g̃i,k,j.
Clearly, agent i obtains a transfer of −5c regardless of the state under B− g̃i,k,j. Thus,

no agent is better off cancelling a contract in B′ unilaterally.

Consider two manipulators, i and j, and a contract bzij ∈ B′′ where z ∈ {1, 2, 3, 4}.
Clearly, PM(B − bzij) = {i, j}. By Assumption 2, under B − bzij an agent who obtains

his preferred realisation incurs a cost of 5c. Thus, neither of the two agents is strictly

better off cancelling bzij unilaterally. We can conclude that no agent wishes to cancel a

contract unilaterally.

To complete the proof, we show that for every side-contract gK 6∈ B, if B+gK �i B
for some i ∈ K, then there exists an agent j ∈ K − {i} and a permissible conjecture

βj(g
K , i) that blocks gK . Consider a side-contract gK such that PM(B + gK) 6= ∅. By

Assumptions 1 and 2, either σ(B + gK , θ) = l for every θ ∈ Θ or σ(B + gK , θ) = h

for every θ ∈ Θ. Assume that σ(B + gK , θ) = l for every θ ∈ Θ (the second case

is analogous and omitted for brevity). Since βk?(gK , i) = ∅ is permissible, if there

is an agent k? ∈ K − {i} such that gKk?(l) < 0, then we have found a permissible

conjecture that blocks gK . Suppose that gKk?(l) ≥ 0 for every k? ∈ K − {i}. Since gK

is budget-balanced, it must be that gKi (l) ≤ 0, in contradiction to B + gK �i B.

Consider a side-contract gK such that PM(B + gK) = ∅. If B + gK �i B, then

gKi (l) > 0 or gKi (h) > 0. Without loss of generality, assume that gKi (l) > 0 and

gKi (l) ≥ gKi (h). Since gK is budget-balanced, there exists an agent k? ∈ K such that

gKk?(l) < 0. If B �k? B + gK , then the permissible conjecture βk?(gK , i) = ∅ blocks the

side-contract. Suppose that B 6�k? B + gK . It follows that gKk?(h) > 0 > gKk?(l). We
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now find a permissible conjecture for k? that blocks gK . Split the analysis into two

cases: (1) i 6∈M and (2) i ∈M .

Case (1). Consider a conjecture βk?(gK , i) = −gi,j,k as described above (since |M | ≥
3, it follows that |M −{k?}| ≥ 2 and we can assume that k? 6∈ {j, k}). Since PM(B +

gK) = ∅, it follows that PM(B − gi,j,k) = PM(B + gK − gi,j,k) = {j, k}. Moreover,

by Assumption 2, σ(B + gK − gi,j,k, θ) = σ(B − gi,j,k, θ) = l for every θ ∈ Θ. Hence,

under the conjecture agent i obtains gKi (l) > 0 regardless of the state if gK is signed

and 0 if it is not signed. Thus, the conjecture is consistent. It blocks the deviation

since gKk?(l) < 0 and it is permissible since it does not require the consent of a third

party.

Case (2.i). Let I = M . Recall that gKk?(h) > 0 > gKk?(l) and gKi (h) ≤ gKi (l). Since

gK is budget-balanced, there is an agent j ∈ K − {i, k?} such that GB
j (h) + gKj (h) −

GB
j (l) − gKj (l) < GB

i (l) + gKi (l) − GB
i (h) − gKi (h) or there is an agent j ∈ M − K

and gKi (h) < gKi (l). In either case, consider a conjecture βk?(gK , i) = −b2ij. Since

PM(B+gK) = ∅, it follows that PM(B−b2ij) = PM(B+gK−b2ij) = {j, i}. Moreover,

by Assumption 2, σ(B + gK − b2ij, θ) = σ(B − b2ij, θ) = l for every θ ∈ Θ and agent i

does not incur any cost to set the signal in B − b2ij or in B − b2ij + gK . Hence, under

this conjecture, in both states, agent i obtains a transfer of 0 if gK is not signed and a

transfer of gKi (l) > 0 if it is signed. Thus, the conjecture is consistent. The conjecture

blocks gK since gKk?(l) < 0 and it is permissible since it does not require the consent of

a third party.

Case (2.ii). Let |I| = |M | + 1. If k? 6∈ M , then we can use the proof of case

(2.i). Suppose that k? ∈M and consider a conjecture βk?(gK , i) = −gi′,i,k as described

above (with i′ 6∈ M , i = j, and k ∈ M − {k?}). Since PM(B + gK) = ∅, it follows

that PM(B − gi
′,i,k) = PM(B + gK − gi

′,i,k) = {i, k}. Moreover, by Assumption 2,

σ(B + gK − gi′,i,k, θ) = σ(B − gi′,i,k, θ) = l for every θ ∈ Θ. Under B − gi′,i,k agent i

obtains 0 regardless of the state while under B−gi′,i,k+gK he obtains at least gKi (l) > 0

regardless of the state. Thus, the conjecture is consistent. It blocks the deviation since

gKk?(l) < 0 and it is permissible since it does not require the consent of a third party.

Case (2.iii). Let |I| > |M |+ 1. In this case, there are two agents i′ 6∈M and k ∈M
such that i′ 6= k? and k 6= k?. Thus, we can apply the argument in the proof of Case

(2.ii) to show that the conjectured βk?(gK , i) that is described above is permissible and

blocks gK .

We can conclude that for every side-contract gK that makes one of the members
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of K better off, at least one of the counterparties to the deviation has a permissible

conjecture that makes him worse off. Thus, B is weakly stable.

Proof of Proposition 4

The proof relies on the following lemma.

Lemma 2 Suppose that B is IC and consider a side-contract bmi such that i 6∈ M ,

bmi(h), bmi(l) ≥ 0, and PM(B + bmi) = {m}. There exists no consistent conjecture

βm(bmi, i) that blocks bmi.

Proof. We will show that every conjecture βm(bmi, i) that blocks bmi is not consistent.

Assume that bmi(h) > bmi(l). Note that under B agent m’s expected payoff is

πmum(wm(H) +GB
m(h)) + (1− πm)um(wm(L) +GB

m(l)). (2)

Since PM(B + bmi) = {m} and bmi(h) > bmi(l), it follows that GB
m(h) + bmi(h) −

(GB
m(l) + bmi(l)) > c. By Assumption 1, under B + bmi agent m’s expected payoff is

πmum(wm(H) +GB
m(h) + bmi(h)) + (1− πm)um(wm(L) +GB

m(h) + bmi(h)− c). (3)

Note that bmi(l) ≥ 0 implies that GB
m(h) + bmi(h) − c > GB

m(l). Hence, (3) is strictly

greater than (2).

We now show that there exists no consistent conjecture βm(bmi, i) that blocks bmi.

Consider a conjecture βm(bmi, i). First, if PM(B + βm(bmi, i)) = ∅, then m obtains

an expected payoff as in (3) if he signs bmi and an expected payoff as in (2) other-

wise. Hence, B + bmi + βm(bmi, i) �m B + βm(bmi, i). Second, suppose that PM(B +

βm(bmi, i)) 6= ∅. Assumptions 1 and 2 imply that either (i) σ(B + βm(bmi, i), θ) = h for

every θ ∈ Θ or (ii) σ(B + βm(bmi, i), θ) = l for every θ ∈ Θ.

In case (i), Assumptions 1 and 2 imply that σ(B + βm(bmi, i), θ) = h = σ(B +

βm(bmi, i) + bmi, θ) for every θ ∈ Θ. Thus, agent i is worse off signing bmi given

βm(bmi, i) (given m’s conjecture, the side-contract bmi is essentially a positive transfer

from i to m that has no effect on the signal). Hence, βm(bmi, i) is not consistent.

In case (ii), agent m obtains an expected payoff of

πmum(wm(H) +GB
m(l)) + (1− πm)um(wm(L) +GB

m(l)) (4)
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if he does not sign bmi and an expected payoff of at least

πmum(wm(H) +GB
m(l) + bmi(l)) + (1− πm)um(wm(L) +GB

m(l) + bmi(l)) (5)

if he does sign bmi. Since bmi(l) ≥ 0, the conjecture βm(bmi, i) does not block bmi.

Note that we assumed throughout the proof that bmi(h) > bmi(l). The case of

bmi(h) < bmi(l) is symmetric and omitted for brevity. Finally, note that bmi(h) = bmi(l)

together with PM(B) = ∅ contradicts PM(B + bmi) = {m}.

We now complete the proof of Proposition 4. The first step shows that if rich-

ness and nontriviality are satisfied and B is constrained-efficient, then there exist

an agent m ∈ M such that
∣∣GB

m (h)−GB
m (l)

∣∣ = c and an agent i 6∈ M such that

sign
(
GB
m (h)−GB

m (l)
)

= sign
(
GB
i (h)−GB

i (l)
)
.

Step 1. Nontriviality implies that there exist two agents m,m′ ∈ M such that

wm (H)−wm (L) ≥ c > −c ≥ wm′ (H)−wm′ (L). If GB
m (l)−GB

m (h) < c and GB
m′ (h)−

GB
m′ (l) < c, then m and m′ can write a side-contract bmm′ in which they provide each

other with fair insurance such that PM(B + bmm′) = ∅. Both m and m′ are better off

signing this side-contract. Note that the constrained efficiency of B implies that there

exists no IC collectionB+bmm′ such thatB+bmm′ �m′ B, andB+bmm′ �m B. It follows

that if B is constrained-efficient, then GB
m (l)−GB

m (h) = c or GB
m′ (h)−GB

m′ (l) = c.

Without loss of generality, assume that GB
m (l) − GB

m (h) = c. If there exists

an agent i 6∈ M such that GB
i (l) > GB

i (h), then we have found a pair of agents,

m ∈ M and i 6∈ M , such that |GB
m (h) − GB

m (l) | = c and sign
(
GB
m (h)−GB

m (l)
)

=

sign
(
GB
i (h)−GB

i (l)
)
. Suppose that for each i 6∈M , GB

i (h) ≥ GB
i (l).

By richness, there exists an agent i 6∈M such that wi (H) > wi (L). Since GB
i (h) ≥

GB
i (l), it follows that wi (H) + GB

i (h) − wi (L) − GB
i (l) > 0. If there exists an agent

j 6∈ M such that wj (H) + GB
j (h) − wj (L) − GB

j (l) < 0, then i and j are better off

writing a side-contract bij in which they provide each other with fair insurance. The

existence of the collection B + bij violates the constrained efficiency of B. Hence, if

B is constrained-efficient, then wj (H) + GB
j (h)− wj (L)−GB

j (l) ≥ 0 for every agent

j ∈ I −M . By richness, there exists an agent j ∈ I −M such that wj (L) > wj (H).

Thus, if B is constrained-efficient, then GB
j (h) > GB

j (l).

By nontriviality, there exists an agent m′ ∈M−{m} such that wm′ (L)−wm′ (H) ≥
c. Recall that there exists an agent i 6∈M such that wi (H)+GB

i (h)−wi (L)−GB
i (l) >

0. If B is constrained-efficient, then there exists no side-contract bim′ such that: (i)
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B + bim′ is IC, (ii) B + bim′ �i B, and (iii) B + bim′ �m′ B. If GB
m′ (h) − GB

m′ (l) < c,

there is always a side-contract bim′ in which both parties provide each other with fair

insurance that satisfies (i), (ii), and (iii). Thus, the constrained efficiency of B implies

that GB
m′ (h)−GB

m′ (l) = c. Since we already found an agent j 6∈M such that GB
j (h) >

GB
j (l), the first part of the proof is complete.

Step 2. Suppose that B is constrained-efficient and, therefore, IC. Without loss

of generality, assume that there exist an agent m ∈ M such that GB
m (l) − GB

m (h) = c

and an agent i 6∈M such that GB
i (l) > GB

i (h). Consider a side-contract bmi such that

bmi (l) > bmi (h) > 0. Since B is IC and GB
m (l)−GB

m (h)+bmi (l)−bmi (h) > c, it follows

that PM (B + bmi) = {m}. By Assumption 1, σ(B + bmi, θ) = l for each θ ∈ {L,H}.
If bmi (l) is sufficiently close to 0, then

πui(wi (H) +GB
i (h)) + (1− π)ui

(
wi (L) +GB

i (l)
)
<

πui
(
wi (H) +GB

i (l)− bmi (l)
)

+ (1− π)ui
(
wi (L) +GB

i (l)− bmi (l)
)

and, therefore, B + bmi �i B. By Lemma 2, there exists no consistent conjecture

βm (bmi, i) that blocks bmi. Thus, there exists no permissible conjecture βm (bmi, i) that

blocks bmi, and so B is not weakly stable.

Proof of Proposition 5

Consider an IC collection B. Suppose that there exists an agent i ∈ M such that

GB
i (l)−GB

i (h) < c or an agent i ∈ L−M such that GB
i (l)−GB

i (h) < w. Consider a

side-contract bij such that bij(l) = ε > 0, bij(h) = −1−π
π
ε, and j ∈ E. If ε is sufficiently

small, then B + bij is IC. Since j ∈ E is risk-neutral and he provides fair coverage

to i in the contract bij, it follows that B + bij �i B and B 6�j B + bij. This is in

contradiction to B being constrained-efficient. Thus, B is constrained-efficient only if

GB
i (l)−GB

i (h) = c for every i ∈ M and GB
i (l)−GB

i (h) ≥ w for every i ∈ L−M . To

complete the proof, we need only repeat Step 2 in the proof of Proposition 4.

Proof of Proposition 6

Step 1 considers one type of side-contract and shows that, if it makes both parties

better off, then it violates the pairwise weak stability of the collection of contracts.
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Step 1. For any collection of contracts B and agent i ∈ L−M , let

(6)

zi
(
GB
i (l)−GB

i (h)
)

=
1

γ
log

[
πexp[γ

(
GB
i (l)−GB

i (h)
)
] + (1− π) exp[γ (wi (H)− wi (L))]

π + (1− π) exp[γ (wi (H)− wi (L))]

]
be agent i’s willingness to pay to guarantee that, ex post, the signal will be l, that is,

πu(wi(H) +GB
i (l)− zi(GB

i (l)−GB
i (h))) + (1− π)u(wi(L) +GB

i (l)− zi(GB
i (l)−GB

i (h)))

= πu(wi(H) +GB
i (h)) + (1− π)u(wi(L) +GB

i (l)).

Consider an IC collection B and a pair of agents, i ∈ L−M and j ∈M , such that

zi(G
B
i (l) − GB

i (h)) + GB
j (l) − GB

j (h) > c. This implies that zi(G
B
i (l) − GB

i (h)) > 0.

Suppose that i and j write a side-contract bji such that 0 < ε = bji(h) < bji(l) =

zi(G
B
i (l) − GB

i (h)) − ε. If ε is sufficiently small, then PM(B + bij) = {j} and, by

Assumption 1, σ(B + bij, θ) = l for every θ ∈ Θ. As zi(G
B
i (l)−GB

i (h)) > 0, it follows

that GB
i (l)−GB

i (h) > 0. Thus, if ε is sufficiently small, then B+ bji �i B. By Lemma

2, bji is not blocked by any consistent conjecture βj(bji) (and, hence, by no permissible

conjecture). Thus, B is pairwise weakly stable only if, for every i 6∈M and j ∈M ,

zi(G
B
i (l)−GB

i (h)) +GB
j (l)−GB

j (h) ≤ c. (7)

Step 2. We now study the coverage maximisation problem subject to (7) and

the incentive-compatibility constraint. Note that zi(·) depends only on the size of

i’s exposure GB
i (l) − GB

i (h). Thus, we can restrict attention to collections B where

GB
i (l)−GB

i (h) = GB
j (l)−GB

j (h) for any pair of agents i, j ∈ J ∈ {L−M,M} (if there

are two agents i, j ∈ J with asymmetric exposure it is always possible to enlarge the

exposure of one of these agents by setting a bilateral contract with a member of E that

does not violate any of the constraints). For every such symmetric collection B, denote

by Rm (B) := GB
m (l)−GB

m (h) and Rk (B) := GB
k (l)−GB

k (h) the coverage provided to

each m ∈M and k ∈ L−M , respectively. When there is no risk of confusion, we omit

B and write Rm, Rk, and z(Rk). Thus, we can write (7) as

z(Rk) +Rm ≤ c. (8)

At the optimum, (8) must hold in equality as, otherwise, we could increase Rm, thereby
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strictly increasing the agents’ coverage.

Denote the solution of the coverage maximisation problem given α by Rα
m and Rα

k .

The aggregate coverage is maximised if and only if the average coverage αRm + (1 −
α)min{Rk, w} is maximised. Note that (8) is concave due to the CARA assumption.

Thus, the maximisation problem is equivalent to maximising a convex combination

αRm + (1 − α)Rk subject to a concave constraint and to the requirements that Rm ∈
[−c, c] and Rk ≤ w. It follows that Rα

m (resp., Rα
k ) is increasing (resp., decreasing) in

α and there exists α? ∈ (0, 1) such that (i) Rα?

m = Rα?

k and (ii) the aggregate coverage

is increasing in α for α < α? and decreasing in α for α > α?.

Fix an arbitrary α ∈ (0, 1). First, note that if Rα
k < 0 and Rα

m ≤ c, then (8) is slack.

Thus, Rα
k ≥ 0. Second, note that Rα

k ≤ w. By our assumption on the size of w, it holds

that z(w) ≤ c. Hence, z(Rα
k ) ≤ c, and so Rα

m ≥ 0. We can conclude that Rα
m ≥ 0 and

Rα
k ≥ 0 for every α ∈ (0, 1). Clearly Rα

m = c > 0 for α = 1 as L = M in this case.

Step 3. Fix an arbitrary α and let R?
k = Rα

k and R?
m = Rα

m. We now construct an

IR and pairwise weakly stable collection of contracts that induces R?
k and R?

m.

Consider a multilateral contract ĝ in which ĝi(h) − ĝi(l) = (αR?
m + (1 − α)R?

k)
|L|
|E|

for every i ∈ E, ĝi(l) − ĝi(h) = R?
m for every i ∈ M , and ĝi(l) − ĝi(h) = R?

k for every

i ∈ L−M . Moreover, set the contract such that each i ∈ E provides fair coverage (i.e.,

πĝi(h) + (1− π)ĝi(l) = 0) and each i ∈ L obtains fair coverage.

For each i ∈ I let zi be implicitly defined by

πui(wi(H) + ĝi(l)− zi) + (1− π)ui(wi(L) + ĝi(l)− zi)

= πui(wi(H) + ĝi(h)) + (1− π)ui(wi(L) + ĝi(l))

and let qi be implicitly defined by

πu(wi(H) + ĝi(h)− qi) + (1− π)u(wi(L) + ĝi(h)− qi)

= πu(wi(H) + ĝi(h)) + (1− π)u(wi(L) + ĝi(l)).

Since R?
m ≥ 0 it follows that zi ∈ [0, c) and qi ∈ (−c, 0] for every i ∈ M . Choose an

agent i ∈ I and three agents, z ∈ I−M and j, k ∈M . Set up two contracts as follows.

• gi,j,k,zi (h) = −qi

• gi,j,k,zi (l) = zi

• gi,j,k,zi (h) = qi

• gi,j,k,zi (l) = −zi

• gi,j,k,zj (h) = −10c

• gi,j,k,zj (l) = 10c
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• gi,j,k,zj (h) = 10c

• gi,j,k,zj (l) = −10c

• gi,j,k,zk (h) = 15c

• gi,j,k,zk (l) = −15c

• gi,j,k,zk (h) = −15c

• gi,j,k,zk (l) = 15c

• gi,j,k,zz (h) = qi − 5c

• gi,j,k,zz (l) = 5c− zi

• gi,j,k,zz (h) = 5c− qi

• gi,j,k,zz (l) = zi − 5c

Repeat this process twice (each time with a different set of three agents) for each

agent i ∈ I and denote the collection of these contracts by B′. Note that the transfers in

B′ sum up to zero and that, in ĝ, risk-neutral agents provide fair coverage to risk-averse

agents. Thus, the collection B = B′ + ĝ is IR.

Consider an arbitrary group of four agents i, j, k, z who signed two contracts as

described above. We show that none of them can benefit from unilaterally cancelling

one of these contracts. By Assumption 2, σ(B− gi,j,k,z, θ) = l and σ(B− gi,j,k,z, θ) = h

for every θ ∈ Θ. By the definition of zi and qi, agent i is indifferent whether to

cancel one of these contracts or not. Agents j and z obtain a strictly negative transfer

regardless of the state if they cancel one of these contracts. Agent k obtains a positive

transfer if he cancels one of these contracts. However, due to agent k’s cost of setting

the signal to his preferred realisation, he is worse off unilaterally cancelling one of these

contracts.

To complete the proof, we need to show that for any agent i and side-contract bix

such that B + bix �i B, there exists a permissible conjecture βx(bix) that blocks it.

Note first that if B �x B + bix, then the (permissible) conjecture βx(bix) = ∅ blocks

the deviation. We therefore focus on cases where B + bix �i B and B 6�x B + bix.

There are four cases to consider: (1) PM(B+ bix) = ∅, (2) PM(B+ bix) = {i}, (3)

PM(B + bix) = {x}, and (4) PM(B + bix) = {i, x}.
Case 1. Since B+bix �i B and B 6�x B+bix, it must be that bix(h) > 0 > bix(l) or

bix(h) < 0 < bix(l). Let bix(h) < 0 < bix(l) and consider a conjecture βx(bix) = −gi,j,k,z.
Since PM(B + bix) = ∅, it follows that bix(l) − bix(h) ≤ c − Rm if i ∈ M . Thus,

i 6∈ PM(B+ bix− gi,j,k,z). Moreover, PM(B+ bix) = ∅ implies that x 6∈ PM(B+ bix−
gi,j,k,z). Hence, PM(B + bix − gi,j,k,z) = (B − gi,j,k,z) = {j, k} and, by Assumption 2,

σ(B − gi,j,k,z, θ) = l = σ(B − gi,j,k,z + bix, θ) for every θ ∈ Θ. Thus, under βx(bix), the

side-contract bix is a state-independent transfer of bix(l) from x to i. Hence, βx(bix) is

consistent and blocks bix. Clearly, βx(bix) ∈ A0
x(B, bix, i) and so it is permissible. The

analysis of the case where bix(h) > 0 > bix(l) is similar and omitted for brevity.

Case 2. Suppose that bix(l) > bix(h). Since B+ bix �i B, it follows that bix(l) > 0.
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If |L − M | > 1, consider a conjecture βx(bxi) = bji such that j ∈ L − M − {x},
bji(l) = 0, and bji(h) = c+ ε. Note that PM(B + bji) = PM(B + bxi + bji) = {i}. By

Assumption 1, σ(B + bxi + bji, θ) = l = σ(B + bji, θ) and so βx(bix) = bji is consistent

and blocks bix. The conjecture is permissible as there is no conjecture βj(bji) that

blocks bji. To see that no conjecture can block bji, consider a conjecture βj(bji). If

σ(B + βj(bji), θ) = σ(B + βj(bji) + bji, θ) for every θ ∈ Θ, then βj(bji) does not block

bji. If σ(B + βj(bji), θ) 6= σ(B + βj(bji) + bji, θ), then σ(B + βj(bji), H) = h and

σ(B + βj(bji) + bji, L) = l and, since R?
k ≥ 0, the conjecture does not block bji.

If L −M ≤ 1, then R?
m > 0. We can assume that j ∈ M − {x}, bji(l) = 0, and

bji(h) = c, and repeat the exercise in the paragraph above.

The case where bix(h) > bix(l) is symmetric (the analysis is essentially identical

except that we choose j ∈ E instead of j ∈ L) and is omitted for brevity. Note that if

bix(h) = bix(l), then it contradicts i ∈ PM(B).

Case 3. For convenience, we write bxi instead of bix in this case. We need to split

the analysis into two subcases: (a) i 6∈M and (b) i ∈M .

First, let i 6∈ M . Assume that bxi(l) > bxi(h). By Assumption 1, σ(B + bxi, θ) = l

for every θ ∈ Θ. As B 6�x B + bxi, it follows that bxi(l) > 0. As B + bxi �i B,

it follows that i ∈ L − M and bxi(l) < z(Rk) = zi. By (8), PM(B + bxi) = {x}
implies that bxi(h) < 0. Consider a conjecture βx(bix) = bji such that j ∈ M − {x},
bji(h) = R?

m + (bxi(l)− bxi(h) + R?
m)− ε, and bji(l) = 0. By Lemma 2, this conjecture

is not blocked by any consistent conjecture βj(bji). If ε > 0 is sufficiently small, then,

by Assumption 2, σ(B + bxi + bji, θ) = l and σ(B + bji, θ) = h for every θ ∈ Θ. Thus,

B + bxi + bji ∼i B + bxi �i B �i B + bji. Hence, βj(bji) is consistent (and, since it

is not blocked by any consistent conjecture, it is also permissible). Finally, under this

conjecture, agent x obtains a net transfer of GB
i (h) + bxi(h) + ε in both states. Hence,

if ε is sufficiently small, the deviation is blocked by the conjecture.

The analysis of the case where bxi(l) < bxi(h) is symmetric and omitted for brevity.

Note that bxi(l) = bxi(h) violates the assumption that x ∈ PM(B + bxi).

Second, let i ∈ M . Note that PM(B + bxi) = {x} implies that R?
m > 0 and that

σ(B + bxi, θ) = l for every θ ∈ Θ. Since B + bxi �i B, it follows that

πui
(
wi (H) +GB

i (h)
)

+ (1− π)ui
(
wi (L) +GB

i (l)
)
<

πui
(
wi (H) +GB

i (l)− bxi (l)
)

+ (1− π)ui
(
wi (L) +GB

i (l)− bxi (l)
)
.

Plugging constant absolute risk aversion into the above expression and rearranging, we
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obtain inequality (9), which provides an upper bound for bxi (l):

bxi (l) <
1

γ
log

[
πexp[γ

(
GB
i (l)−GB

i (h)
)
] + (1− π) exp[γ (wi (H)− wi (L))]

π + (1− π) exp[γ (wi (H)− wi (L))]

]
. (9)

We now find a permissible conjecture βx (bxi) to block bxi. Consider βx (bxi) = bji,

such that j ∈ L, bji(l) = 0, GB
i (l)−GB

i (h)− bji (l) + bji (h) > c, and GB
i (l)−GB

i (h)−
bji (l) + bji (h) − bxi (l) + bxi (h) ≤ c. Under this conjecture, the side-contract bxi has

no effect on the signals’ distribution (agent i’s incentive-compatibility constraint is

violated under B+bji and agent x’s incentive-compatibility constraint is violated under

B + bji + bxi). Rather, it affects the identity of the agent who pays for manipulation

as agent x is the one who incurs the cost of manipulation under B + bji + bxi. Observe

that the conjecture does not block the deviation if and only if

πux
(
wx (H) +GB

x (l) + bxi (l)− c
)

+ (1− π)ux
(
wx (L) +GB

x (l) + bxi (l)
)
≥

πux
(
wx (H) +GB

x (l)
)

+ (1− π)ux
(
wx (L) +GB

x (l)
)
.

Plugging constant absolute risk aversion into the above expression, we obtain

bxi (l) ≥
1

γ
log

[
πexp[γc] + (1− π) exp[γ (wx (H)− wx (L))]

π + (1− π) exp[γ (wx (H)− wx (L))]

]
. (10)

Since B is IC, c ≥ GB
i (l)−GB

x (h) and, therefore, there exists no contract bix that

satisfies both (10) and (9). Inequality (11) guarantees that βx (bxi) is consistent:

πui
(
wi (H) +GB

i (l) + bij (l)− c
)

+ (1− π)ui
(
wi (L) +GB

i (l) + bij (l)
)

(11)

< πui
(
wi (H) +GB

i (l) + bij (l)− bxi (l)
)

+ (1− π)ui
(
wi (L) +GB

i (l) + bij (l)− bxi (l)
)
.

One can verify that inequality (11) is implied by inequality (9). Since j can only benefit

from signing bji, βx (bxi) is not blocked by any conjecture βj(βx (bxi) , i) and, therefore,

it is permissible.

Case 4. If R?
m = 0, then σ(B + bix) = h for every θ ∈ Θ. Hence, B + bix �i B

implies that B �x B + bix. In the remainder of the proof, we assume that R?
m > 0.

When R?
m > 0 and i, x ∈ PM(B+ bix), Assumption 2 implies that σ(B+ bix, θ) = l for
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every θ ∈ Θ.

Assume that bix(l) > bix(h). Since B+ bix �i B, it follows that bix(l) > 0. Consider

a conjecture βx(bix) = bji such that j ∈ L, bji(l) = 0, and bji(h) = c. Note that

PM(B+bji) = {i} and that σ(B+bji, θ) = σ(B+bji+bix, θ) = l for every θ ∈ Θ. Under

this conjecture, bix is a positive transfer of bix(l) > 0 from x to i regardless of the state.

Hence, the conjecture blocks the deviation. Since B+bji+bix ∼i B+bix �i B �i B+bji

the conjecture is consistent. Clearly, there is no conjecture that blocks it and, as a

result, it is permissible.

Assume that bix(l) < bix(h). Since B + bix �i B, it follows that −bix(l) < zi (see

the RHS of (9)). The rest of the proof is similar to the proof of Case 3 with i ∈ M
and is omitted for brevity. Note that bix(l) = bix(h) violates the assumption that

i, x ∈ PM(B + bix).

Proof of Proposition 7

The proof uses the same ideas and arguments as the proof of Proposition 6. We shall

refer the reader to the proof of Proposition 6 whenever there is redundancy.

Step 1. For every collection B, let zhi (GB
i (h)−GB

i (l)) = (1− πh)(GB
i (h)−GB

i (l))

for every i ∈ Ih and zli(G
B
i (l) − GB

i (h)) = πl(G
B
i (l) − GB

i (h)) for every i ∈ I l. Note

that zsi is agent i’s willingness to pay to impose realisation s ex post.

Let B be an IC collection and suppose that there is a pair of agents i ∈ Ih−M and

j ∈M such that zhi (GB
i (h)−GB

i (l)) +GB
j (h)−GB

j (l) > c. Consider a side-contract bji

such that bji(l) = ε < bji(h) = zhi (GB
i (h)−GB

i (l))− ε. Note that if ε > 0 is sufficiently

small, then PM(B + bji) = {j} and, by Assumption 1, σ(B + bji, θ) = h for every

θ ∈ Θ. Moreover, if ε > 0 is sufficiently small, both i and j are better off signing this

side-contract. By Lemma 2, there is no permissible conjecture βj(bji) that blocks bji

and, therefore, B is not pairwise weakly stable. We can conclude that B is pairwise

weakly stable only if there is no pair of agents i ∈ Ih − M and j ∈ M such that

zhi (GB
i (h)−GB

i (l)) +GB
j (h)−GB

j (l) > c. Similarly, a necessary condition for B to be

pairwise weakly stable is that there is no pair of agents i ∈ I l −M and j ∈ M such

that zli(G
B
i (l)−GB

i (h)) +GB
j (l)−GB

j (h) > c.

Step 2. In this step, we solve for the maximal volume of trade that can be attained

subject to incentive compatibility, Condition 1, and the two necessary conditions es-

tablished in the previous paragraph. Since zsi depends only on GB
i (h) − GB

i (l), there

is no loss of generality in focusing on symmetric collections of contracts, namely, col-

lections in which GB
i (h) − GB

i (l) = GB
j (h) − GB

j (l) for every pair of agents i, j ∈ J ∈
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{Ih −M, I l −M, Ih ∩M, I l ∩M}. We denote by Rh
k , Rl

k, R
h
m, R

l
m the exposure to the

signal GB
i (h) − GB

i (l) of each i ∈ Ih −M , i ∈ I l −M , i ∈ Ih ∩M , and i ∈ I l ∩M ,

respectively. Thus, we can translate the necessary conditions identified in Step 1 to

Rh
m + zh(Rh

k) ≤ c (12)

−Rl
m + zl(Rl

k) ≤ c. (13)

The incentive-compatibility constraints together with Condition 1 imply that

Rl
k ≤ 0, Rh

k ≥ 0, Rl
m ∈ [−c, 0], and Rh

m ∈ [0, c]. (14)

Since contracts are budget-balanced, it holds that

αRh
m + (1− α)Rh

k = −(αRl
m + (1− α)Rl

k). (15)

To solve for the maximal average volume of trade, we can maximise αRh
m + (1− α)Rh

k

subject to (12) and (14), and maximise −αRl
m − (1 − α)Rl

k subject to (13) and (14).

The minimum of the two is the maximal average coverage and it is given in the premise

of the proposition.

Step 3. We now construct a collection of contracts that induces a volume of trade as

in (1) while being IC, IR, pairwise weakly stable, and satisfying Condition 1. There are

two cases to consider: (1) α ≥ (1−α)min{ 1
1−πh

, 1
πl
} and (2) α < (1−α)min{ 1

1−πh
, 1
πl
}.

Case 1. Let Ih ∩M = {1, ..., N} and I l ∩M = {1′, ..., N ′}. For each i ∈ Ih ∩M
match agent i′ ∈ I l ∩M and set a contract bii′ such that bii′(h)− bii′(l) = c, πhbii′(h) +

(1 − πh)bii′(l) > 0, and −πlbii′(h) − (1 − πl)bii′(l) > 0. Since πh > πl, such contracts

exist. Denote the collection of these contracts by B′. In addition to these contracts,

for each pair of agents i, j ∈ Ih ∩M set two contracts:

• b1ij(l) = −10c

• b2ij(l) = 10c

• b1ij(h) = zhi (c)

• b2ij(l) = −zhi (c)

and for each pair of agents i, j ∈ I l ∩M set two contracts:

• b1ij(h) = −10c

• b2ij(h) = 10c

• b1ij(l) = zli(c)

• b2ij(l) = −zli(c).
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Denote the collection of all contracts by B and note that, by construction, B is IR

(no agent wants to cancel the single contract that he signed in B′ and the transfers

each agent obtains in the contracts B − B′ sum up to zero) and IC. It also satisfies

Condition 1. We now verify that no agent is better off cancelling a contract b ∈ B−B′.
Suppose that agent i ∈ Ih∩M cancels b1ij. Assumption 2 implies that PM(B−b1ij) =

{i, j} and that σ(B − b1ij, θ) = h for every θ ∈ Θ. Moreover, agent i obtains transfers

of GB
i (h) − zhi (c) regardless of the state under B − b1ij. Thus, i is indifferent whether

to cancel b1ij or not. Agent j is strictly worse off cancelling b1ij as he obtains a transfer

of GB
i (h) + zhi (c) in this case and incurs a cost of 10c + zhi (c)− c. The analysis of the

cancellation of every other contract in B − B′ is either identical to the analysis of the

cancellation of b1ij or a mirror image of it. Therefore, we omit it. We can conclude that

no agent is strictly better off cancelling a contract in B unilaterally.

It is left to check that for every side-contract bij such that B+ bij �i B, there exists

a permissible conjecture βj(bij) that blocks it.

First, consider an agent i ∈ Ih −M and a side-contract bij such that B + bij �i B.

If j ∈ Ih ∪ (I l ∩ M), then B + bij �i B implies that B �j B + bij. Thus, the

conjecture βj(bij) = ∅ is permissible and blocks bij. Suppose that j ∈ I l − M . In

this case, B + bij �i B together with B 6�j B + bij implies that bij(h) > 0 > bij(l).

The side-contract bij is blocked by a conjecture βj(bij) = bxi, where x ∈ Ih ∩ M ,

bxi(h) = 2ε > ε = bxi(l), and ε is close to 0. This conjecture is consistent since under it

the side-contract bij is a positive transfer from j to i. By Lemma 2, the conjecture is

not blocked by any consistent conjecture and, therefore, it is permissible.

Second, consider an agent i ∈ Ih∩M and a side-contract bij such that B+bij �i B.

If j ∈ I l ∪ (Ih−M), then B+ bij �i B implies that B �j B+ bij. Thus, the conjecture

βj(bij) = ∅, which is permissible, blocks bij. Suppose that j ∈ Ih ∩M . The analysis of

this case is similar to the analysis of cases 3 and 4 in Proposition 6 (replacing CARA

with risk neutrality) and therefore omitted.

The analysis of the cases where i ∈ I l −M and i ∈ I l ∩M is analogous to that of

the above two cases and omitted for brevity.

Case 2. Assume without loss of generality that 1
1−πh

≤ 1
πl

. Let Ih∩M = {1, ..., N}
and I l∩M = {1′, ..., N ′}. For every i ∈ Ih∩M set a contract with i′ ∈ I l∩M such that

(bii′(h)−bii′(l))(1−πh) = c, πhbii′(h)+(1−πh)bii′(l) > 0, and −πlbii′(h)−(1−πl)bii′(l) >
0. Since πh > πl, such contracts exist. Denote the collection of these contracts by B′′

and note that no agent wants to cancel the single contract that he signed in B′′ and
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that B′′ is IC and satisfies Condition 1. In addition, define qi, zi, and the collection B′

as in Step 3 of the proof of Proposition 6 (where qi and zi are defined with respect to

GB′′ instead of with respect to ĝ). As in Proposition 6, the transfers in the contracts in

B′ sum up to zero and no agent strictly benefits from unilaterally cancelling a contract

in B = B′ +B′′.

It is left to check that for every side-contract bij such that B + bij �i B, there

exists a permissible conjecture βj(bij) that blocks it. Let i ∈ I l −M and consider a

side-contract bij such that B + bij �i B. If PM(B + bij) = ∅, then B + bij �i B and

B + bij 6�j B imply that bij(h) < 0 < bij(l). As in Case 1 of Proposition 6 a conjecture

βj(bij) = −gi,j,k,z is permissible and blocks the deviation (under such a conjecture, bij

becomes a state-independent transfer of bij(l) > 0 from j to i).

Now suppose that PM(B+ bij) 6= ∅. It follows that PM(B+ bij) = {j}. Moreover,

B+bij �i B implies that σ(B+bij, θ) = l for every θ ∈ Θ and that −bij(l) < zl(Rl
k) ≤ c.

Since j ∈ PM(B + bij), (13) implies that bij(h) > 0 (as, otherwise, j’s incentive

constraint is not violated). To see that a conjecture βj(bij) = −gi,j′,k′,z′ is consistent,

note that either σ(B+ bij−gi,j
′,k′,z′ , θ) = l for every θ ∈ θ or σ(B+ bij−gi,j

′,k′,z′ , θ) = h

for every θ ∈ Θ. In the former case, B − gi,j′,k′,z′ + bij �i B + bij �i B ∼i B − gi,j
′,k′,z′ .

In the latter case, bij is a state-independent transfer of bij(h) > 0 from j to i. Since in

both cases j is worse off signing bij (taking the cost of setting the signal into account)

we have a permissible conjecture that blocks the deviation.

Now consider the case where i ∈ I l ∩M . If PM(B + bij) = ∅, then B + bij �i B
and B 6�j B + bij imply that bij(l) > 0 > bij(h) and |bij(l) − bij(h)| ≤ c. Thus,

under a conjecture βj(bij) = −gi,j′,k′,z′ , bij is essentially a state-independent transfer of

bij(l) > 0 from j to i. Hence, the conjecture is consistent and blocks the deviation. It

is also permissible as it does not require the consent of a third party.

Now suppose that PM(B+bij) 6= ∅. If PM(B+bij) = {i, j}, then σ(B+bij, θ) = h

for every θ ∈ Θ and B + bij �i B implies that B �j B + bij. Thus, the permissible

conjecture βj(bij) = ∅ blocks bij. Note that it cannot be that PM(B + bij) = {j}. To

complete the proof, assume that PB(B + bij) = {i}. The analysis of the case where

PM(B + bij) = {i} is similar to that of Case 2 in the proof of Proposition 6 and

therefore it is omitted.

The analysis of the case where i ∈ I l−M and the case where i ∈ I l∩M is analogous

to that of the above two cases and omitted for brevity.
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Supplementary Appendix

The Maximal Aggregate Coverage in Section 5.1

First, let us plug the weak-stability constraint given in (8) into our objective function,

αRm + (1− α)Rk, to obtain (16):

α

(
c− 1

γ
log[

πexp[γRk] + (1− π) exp[γw]

π + (1− π) exp[γw]
]

)
+ (1− α)Rk. (16)

We now maximise (16) subject to the restriction to Rk ∈ [0, w] and Rm ∈ [0, c]. From

the first-order condition we obtain that in an internal solution,

Rk = w − 1

γ
log[

π (2α− 1)

(1− π) (1− α)
]. (17)

The coverage Rk is decreasing in π since the willingness to pay to guarantee that the

signal is l is increasing in the probability that state H is realised. This follows from

the fact that k ∈ L −M benefits from manipulation only when state H is realised.

Intuitively, when α is increasing, Rk is decreasing and Rm is increasing. Moreover,

as explained in the main text, the coverage Rk increases when agents become more

risk-averse. In an internal solution,

Rm =

c− 1

γ
log[

πexp[γ
(
w − 1

γ
log[ π(2α−1)

(1−π)(1−α) ]
)

] + (1− π) exp[γw]

π + (1− π) exp[γw]
]

 . (18)

Hence the maximal coverage per insurer that can be obtained in an IR, IC, and pairwise

weakly stable contract is

α

(
c− 1

γ
log[

πexp[γ (w −∆)] + (1− π) exp[γw]

π + (1− π) exp[γw]
]

)
+ (1− α) (w −∆)], (19)

where ∆ := 1
γ
log[ π(2α−1)

(1−π)(1−α) ]. To ensure that the solution is indeed internal10 we must

verify thatRk ∈ (0, w). Observe that this condition is satisfied for α ∈ ( 1
1+π

, π+(1−π)exp[γw]
2π+(1−π)exp[γw]).

Let us consider the following parameters: w = 10, γ = 0.5, π = 0.9, and c = 8. For

α ∈ (0.526, 0.945) we obtain an internal solution for Rk. For α ≤ 0.526 (α ≥ 0.945),

10In a corner solution, either Rk = w or Rk = 0 (plugging Rk into (16) yields the maximal average
coverage).
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Rk = 10 (Rk = 0) and Rm = 3.512 (Rm = 8). For α = 0.75, the maximal average

level of coverage is 6.534, which reflects a loss of 23.13 percent when compared to

the constrained-efficient level of coverage, which is 8.5. If we increase the agents’ risk

aversion to γ = 1, we have an internal solution to Rk for α ∈ (0.526, 0.999). For

α ≤ 0.526 (α ≥ 0.999), we have Rk = 10 (Rk = 0) and Rm = 5.697 (Rm = 8).

Mixed Conjectures

In this part of the appendix, we incorporate mixed conjectures into the analysis and

show that allowing for mixed conjectures does not change any of the results in the

paper. To this end, we shall prove that a collection of contracts is weakly stable when

mixed conjectures are allowed if and only if it is weakly stable when mixed conjectures

are precluded.

Incorporating mixed conjectures into the model requires adapting our basic notions.

For every collection of contracts B ∈ B and pair of agents i, j ∈ I, let D0
ij(B) = {gZ ∈

B|i ∈ Z and j 6∈ Z} be the set of contracts in B that involve i but not j, and let

D1
ij(B) = {gZ 6∈ B|i ∈ Z and j 6∈ Z} be the set of potential side-contracts that involve

agent i and not j. An element of D0
ij(B) represents a cancellation of a contract by i

and an element of D1
ij represents a signing of a side-contract by i. A mixed conjecture

β̂j(B, g
K , i) ∈ ∆(D0

ij(B) ∪ D1
ij(B)) is a probability distribution over deviations that

involve agent i. We reserve β to denote “pure” conjectures and, as in the main text,

omit B from the description of a conjecture. Recall that a pure conjecture βj(g
K , i) is

consistent if B + βj(g
K , i) + gK �i B + βj(g

K , i). A mixed conjecture β̂j(g
K , i) is said

to be consistent if every pure conjecture βj(g
K , i) ∈ supp(β̂j(g

K , i)) is consistent. A

conjecture β̂k(g
Z , i) blocks the conjecture β̂j(g

K , i) if gZ ∈ supp(β̂j(gK , i)), gZ ∈ D1
ij(B),

k ∈ Z − {i}, and B + β̂k(g
Z , i) �k B + β̂k(g

Z , i) + gZ .

We are now ready to incorporate mixed conjectures into the notion of permissibility.

Definition 9 For every collection B ∈ B, side-contract gK, agent j ∈ K, and initiator

i ∈ K − {j}, let

Â0
j(B, g

K , i) = {β̂j(gK , i) ∈ ∆(D0
ij(B))|β̂j(gK , i) is consistent},

and, for every t > 0, let Âtj(B, g
K , i) be the set of consistent conjectures β̂j(g

K , i) that

satisfy the following condition:
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• For every consistent conjecture β̂k(g
Z , i) that blocks β̂j(g

K , i), there exists a con-

jecture β̂z(g
J , i) ∈ ∪t−1x=0Â

x
z(B, g

J , i) that blocks it.

A conjecture β̂j(g
K , i) is said to be permissible if β̂j(g

K , i) ∈ ∪∞t=0Â
t
j(B, g

K , i).

The definition of weak stability remains as in the main text.

Definition 10 A collection of contracts B is said to be weakly stable if the following

two conditions are met:

• There is no agent i ∈ I and contract gK ∈ B such that i ∈ K and B − gK �i B.

• For every side-contract gK such that B + gK �i B for some i ∈ K, there exists

an agent j ∈ K − {i} and a permissible conjecture β̂j
(
gK , i

)
that blocks gK.

Proof of the equivalence result.

First, observe that a side-contract gK is blocked by a mixed conjecture β̂j(g
K , i) only

if it is blocked by at least one pure conjecture βj(g
K , i) ∈ supp(β̂j(gK , i)). This implies

that a side-contract is blocked by a mixed conjecture if and only if it is blocked by a

pure conjecture.

The second step of the proof is to show that the set of pure permissible conjectures

is the same regardless of whether mixed conjectures are allowed or not. To see this,

consider an arbitrary side-contract gK and the set of pure conjectures A0
j(g

K , i) (we

omit “B” for brevity). Every pure conjecture βj(g
K , i) ∈ A0

j(g
K , i) is consistent and

βj(g
K , i) ∈ D0

ij(B). Hence, A0
j(g

K , i) ⊆ Â0
j(g

K , i). Note that Â0
j(g

K , i) − A0
j(g

K , i)

consists only of mixed conjectures whose support consists of pure consistent conjectures

that i cancelled a contract. Thus, it includes only conjectures whose support consists

of pure conjectures in A0
j(g

K , i).

We now focus on Â1
j(g

K , i). There are three things we need to show. First,

(A0
j(g

K , i) ∪ A1
j(g

K , i)) ⊆ (Â0
j(g

K , i) ∪ Â1
j(g

K , i)). Second, Â0
j(g

K , i) + Â1
j(g

K , i) −
A0
j(g

K , i) − A1
j(g

K , i) does not include pure conjectures. Third, every pure conjecture

in the support of a mixed conjecture β̂j(g
K , i) ∈ Â1

j(g
K , i) must belong to A0

j(g
K , i) ∪

A1
j(g

K , i). It is then possible to show that these three properties hold for any t > 1 by

induction.

Consider a pure conjecture βj(g
K , i) = gZ such that gZ ∈ A1

j(g
K , i). It is consistent

regardless of whether mixed conjectures are allowed. Moreover, by definition, there is
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no conjecture β ∈ ∪k∈Z−{i}A0
k(g

Z , i) that blocks it. Since every conjecture in Â0
k(g

Z , i)

is a mix of pure conjectures that belong to A0
k(g

Z , i), the first step of the proof shows

that βj(g
K , i) is not blocked by any conjecture β ∈ ∪k∈Z−{i}Â0

k(g
Z , i). Finally, note

that every pure consistent conjecture βk(g
Z , i) = gJ that blocks βj(g

K , i) = gZ is itself

blocked by a conjecture β ∈ ∪z∈J−{i}A0
z(g

J , i) ⊆ ∪z∈J−{i}Â0
z(g

J , i). We can conclude

that βj(g
K , i) ∈ Â0

j(g
K , i) ∪ Â1

j(g
K , i). Hence, (A0

j(g
K , i) ∪ A1

j(g
K , i)) ⊆ (Â0

j(g
K , i) ∪

Â1
j(g

K , i)).

Consider a pure conjecture βj(g
K , i) = gZ such that gZ 6∈ A1

j(g
K , i) ∪ A0

j(g
K , i).

Either it is not consistent or it is consistent and there exists some agent k ∈ Z−{i} and

a consistent conjecture βk(g
Z , i) = gJ that blocks βj(g

K , i) = gZ and is not blocked by

any pure conjecture β ∈ ∪z∈J−{i}A0
z(g

J , i). In either case, it cannot be part of Â1
j(g

K , i).

We can conclude that Â0
j(g

K , i) + Â1
j(g

K , i) − A0
j(g

K , i) − A1
j(g

K , i) does not include

pure conjectures.

Finally, assume to the contrary that there is a mixed conjecture β̂j(g
K , i) ∈ Â1

j(g
K , i)

and a pure conjecture βj(g
K , i) ∈ supp(β̂j(g

K , i)) such that βj(g
K , i) 6∈ A1

j(g
K , i) ∪

A0
j(g

K , i). If βj(g
K , i) is inconsistent, then we obtain a contradiction to the consistency

of β̂j(g
K , i). Suppose that βj(g

K , i) is consistent and let βj(g
K , i) = gZ . Since gZ 6∈

A1
j(g

K , i) ∪ A0
j(g

K , i), it must be blocked by a consistent conjecture βk(g
Z , i) that is

itself not blocked by any consistent conjecture β ∈ ∪z∈β−1
k (gZ ,i)A

0
z(βk(g

Z , i), i). This is in

contradiction to the fact that both β̂j(g
K , i) ∈ Â1

j(g
K , i) and βj(g

K , i) ∈ supp(β̂j(gK , i)).
We conclude that the set of pure permissible conjectures is unchanged when mixed

conjectures are allowed. Recall that a side-contract is blocked by a mixed conjecture

only if it is blocked by one of the pure conjectures in its support. Hence, an IC

collection of contracts is weakly stable when mixed conjectures are allowed if and only

if it is weakly stable when mixed conjectures are not allowed.
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