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We study a model of two-sided search in which agents’ strate-
gic reasoning is coarse. In equilibrium, the most desirable agents
behave as if they were fully rational, while, for all other agents,
coarse reasoning results in overoptimism with regard to their
prospects in the market. Consequently, they search longer than
optimal. Moreover, agents with intermediate match values may
search indefinitely while all other agents eventually marry. We
show that the share of eternal singles converges monotonically to
1 as search frictions vanish. Thus, improvements in search tech-
nology may backfire and even lead to market failure.

Modern search technologies present new opportunities for individuals who are
looking for a partner. For instance, mobile applications such as Tinder and Bum-
ble, and online dating sites such as OkCupid and Plenty of Fish, allow individuals
to find a partner with the swipe of a finger. These new technologies have reduced
search costs and thickened matching markets, which enables individuals to meet
a large number of potential matches in a short span of time.

Choosing a partner is one of the most important decisions in a person’s life. It
typically entails comparing a specific potential partner to a risky outside option,
that is, continuing to search without knowing for how long or with whom one
will eventually partner. Assessing this outside option requires understanding
other people’s behavior, which can be challenging. It may lead individuals to use
heuristics and simplified models of the world to assess their prospects, especially
in light of the wide array of options that are ubiquitous in modern matching
markets.

This paper studies how advances in search technology affect marriage market
outcomes when agents’ reasoning is imperfect. To this end, we study a model
of two-sided search with vertical differentiation and nontransferable utility. This
framework has proved useful in understanding decentralized matching markets
(see Chade, Eeckhout and Smith, 2017, for a comprehensive review). In this
framework, agents are matched at random and decide whether to accept the
match or continue to search. It is typically assumed that the participants are
fully rational and, in particular, can perfectly assess the prospect of remaining
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single and continuing to search. Under that assumption, improvements in the
search technology enhance the welfare of the bulk of the market participants.
However, in practice, not everyone benefits from these changes. For example,
according to a survey by Pew Research Center (2016), “One-third of people who
have used online dating have never actually gone on a date with someone they
met on these sites.”

We depart from the rational expectations paradigm by relaxing the assumption
that agents have a perfect understanding of the mapping from the other agents’
characteristics to their behavior. The literature offers two main equilibrium no-
tions that capture the above idea: the partially cursed equilibrium (Eyster and
Rabin, 2005) and the analogy-based expectation equilibrium (Jehiel, 2005). We
characterize the equilibria of the model under both notions and find that, despite
their differences, they lead to similar results.

In equilibrium, except for the most desirable agents, who behave as if they were
fully rational, all other agents are overoptimistic with regard to the prospect of
remaining single and continuing to search. This overoptimism has significant
implications as, except for the least desirable agents who accept all potential
partners, agents who overvalue the prospect of remaining single reject agents
whom a rational agent would accept. In a two-sided market, this imposes a
negative externality on agents on the other side of the market and causes them
to search longer as fewer people are willing to marry them. In equilibrium, these
effects lead to a delay in matching. In fact, as long as the meeting rate is not too
slow, in every symmetric equilibrium, there are agents with intermediate match
values (i.e., moderately desirable agents) who search indefinitely and remain single
forever. By contrast, agents with lower or higher match values marry in finite
time.

We show that when search frictions become less intense, the share of agents
who search indefinitely weakly increases. Thus, technological improvements that
result in faster search that enhance individuals’ welfare if they are fully rational
can degrade it if they are not. Though counterintuitive, the finding that fewer
matches are formed when the market becomes less frictional is consistent with
recent empirical findings: Fong (2020) shows that when more men and women
join a dating platform, participants in the market become more selective and the
number of matches per individual goes down.

We find that, for any level of coarseness (or, in Eyster and Rabin’s terminology,
any degree of partial cursedness), the share of agents who search indefinitely
converges to 1 when search frictions vanish. The intuition for the market collapse
is as follows. Our agents falsely believe that “top” agents are achievable. When
the technology improves and allows potential partners to meet more frequently,
their willingness to wait for a top agent increases and they become more selective.
Eventually, agents become too selective and reject agents of their own caliber or
lower. For similar reasons, they are rejected by agents of their own caliber or
higher. As a result, they search indefinitely and never marry.
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These market unraveling results are quite different from the results under the
rational expectations model, in which, when frictions vanish, the equilibrium
converges to a stable matching in the sense of Gale and Shapley (1962). This
contrast highlights that even a slight departure from the rational expectations
model can lead to radically different outcomes when search frictions vanish.

Related Literature

Our paper contributes to a large body of literature on matching with frictions (see
McNamara and Collins, 1990; Burdett and Coles, 1997; Eeckhout, 1999; Bloch and
Ryder, 2000; Shimer and Smith, 2000; Chade, 2001, 2006; Adachi, 2003; Smith,
2006). This literature focuses on the properties of induced matchings under var-
ious assumptions on search frictions, match payoffs, search costs, and the ability
to transfer utility. In particular, it shows that when utility is nontransferable and
frictions vanish, equilibrium matching converges to an efficient matching.1

We adopt the coarse reasoning models of Eyster and Rabin (2005) and Jehiel
(2005). Similar ideas have been applied in various contexts. For example, Piccione
and Rubinstein (2003) study intertemporal pricing, where consumers think in
terms of a coarse representation of the equilibrium price distribution.2 In the
context of consumer search, Gamp and Krähmer (2018) analyze a model in which
a share of consumers do not distinguish between deceptive and candid products
nor can they infer quality from price. In Gamp and Krähmer (2019), a share of the
consumers misestimate the correlation between price and quality and, as a result,
search excessively for a high-quality low-priced product, falsely believing that
it exists. These false expectations stimulate competition between fully rational
sellers and the effect is most intense when the consumers’ search costs (or level
of misestimation) are intermediate.3

In the two-sided search framework, coarse reasoning leads to selection neglect in
equilibrium. Esponda (2008) proposes an equilibrium model of selection neglect
and shows that traders who do not account for selection can exacerbate adverse
selection problems. In Jehiel (2018), entrepreneurs decide whether or not to invest
in a project based on feedback from implemented projects. The entrepreneurs
ignore the lack of feedback from unimplemented projects, which, on average,
are inferior to implemented ones. As a result they become overoptimistic and
implement projects in cases where it is suboptimal to do so.

There are a limited number of theoretical papers that relax the full rational-
ity assumption in the context of matching. Eliaz and Spiegler (2014) analyze a

1Lauermann and Nöldeke (2014) find conditions under which this result holds without vertical het-
erogeneity.

2Other applications are Jehiel (2011) in the context of auctions, Eyster and Piccione (2013), Steiner
and Stewart (2015), Kondor and Kőszegi (2017), and Eyster, Rabin and Vayanos (2019) in the context
of trade in financial markets, and Antler (2018) in the context of pyramid schemes.

3In these models, agents can be viewed as if they were using a simplified representation of the world to
form their expectations. For a comprehensive review of equilibrium models in which individuals interpret
data by means of a misspecified causal model see Spiegler (2020).
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search-and-matching model where agents exhibit “morale hazard.” The behav-
ioral assumption in that paper pertains to the agents’ preferences rather than to
their beliefs. In the context of centralized matching, a recent strand of the liter-
ature assumes that agents’ preferences are nonstandard (see, e.g., Antler, 2015;
Fernandez, 2018; Dreyfuss, Heffetz and Rabin, 2019; Meisner and von Wangen-
heim, 2019).

Our departure from the rational expectations setting is in line with empirical
evidence that people neglect correlations when problems become more complex
(Enke and Zimmermann, 2019). In the context of centralized school matching,
Rees-Jones, Shorrer and Tergiman (2020) find that students tend to neglect corre-
lation between schools’ tastes and priorities. In the context of courtship, Fisman
et al. (2006) find that men exhibit behavior consistent with choice overload, and
Lenton and Francesconi (2011) document similar findings on both sides of the
market.

The paper proceeds as follows. Section I presents the baseline model and bench-
mark results in a setting in which agents who leave the market are replaced by
identical ones. Section II studies the behavioral models in this setting. Section III
analyzes the steady-state equilibrium when entry into the market is exogenous.
Section IV concludes. All proofs are relegated to the Appendix.

I. The Baseline Model

There is a set of men,M, and a set of women, W, each containing a unit mass
of agents. Each agent is characterized by a number, which, following Burdett and
Coles (1997), we refer to as the agent’s pizzazz and assume is distributed on the
interval [v, v], v > 0, according to an atomless continuous distribution F . We
denote the corresponding density by f and refer to an agent with pizzazz v as
agent v.

The market operates in continuous time. Each individual meets agents of the
opposite sex at a flow rate µ, where µ is the parameter of a Poisson process.
Meetings are random: agents meet agents of the opposite sex with pizzazz value in
[v1, v2] at a flow rate proportional to their mass in the population µ[F (v2)−F (v1)].
When two agents meet, they immediately observe each other’s pizzazz and decide
whether to accept each other as a partner. If both agents accept, then they marry
and exit the market. Otherwise, they return to the market and continue their
search. When agent v marries agent w, the latter obtains a payoff of v and the
former obtains a payoff of w. Agents obtain no flow payoff when single. Agents
maximize their expected payoffs discounted at a rate r > 0.

When agents leave the market they are immediately replaced by agents with
identical characteristics and so the distribution of agents’ characteristics does not
change over time. This simplifying assumption allows us to focus on the main
messages while keeping the exposition simple. As we show in Section III, when
considering a richer model with exogenous inflow in which married agents are not
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replaced by clones, there indeed exists a steady-state equilibrium in which the
distribution of agents’ characteristics does not change over time.

A stationary strategy for agent v, σv(·) : [v, v] → {1, 0}, is a mapping from
pizzazz values of agents on the other side of the market to a decision whether to
accept or reject a match.4 Throughout the analysis, we assume that agents use
cutoff strategies: each agent v’s strategy is characterized by a cutoff âv such that
agent v accepts matches with agents whose pizzazz is at least âv and rejects all
others.5 For each agent v and profile of strategies σ, let Av(σ) = {w|σw(v) = 1}
be the set of agents who accept a match with v and let av(σ) = sup(Av(σ)) be
agent v’s opportunity value. When there is no risk of confusion, we omit the
dependence on σ from Av and av.

Throughout the analysis, we focus on symmetric equilibria, namely, equilibria
in which women and men with the same pizzazz use the same strategy. We discuss
and illustrate the differences between symmetric and asymmetric equilibria at the
end of Section II.A, after presenting our results.

Benchmark Results: Full Rationality

The analysis of the “rational expectations” benchmark follows from well-known
results in the matching with frictions literature and, therefore, we omit the formal
proofs. Proposition 1 is a classic block segregation result (see, e.g., McNamara
and Collins, 1990; Burdett and Coles, 1997; Eeckhout, 1999; Bloch and Ryder,
2000; Chade, 2001; Smith, 2006).

PROPOSITION 1: There exist numbers v = v0 > v1 > v2 > ... > vN = v such
that, in the unique equilibrium, every agent v ∈ [vj+1, vj) uses the acceptance
cutoff vj+1.

In equilibrium, agents are partitioned into classes, such that agents who belong
to the same class use the same acceptance cutoff and have the same opportunity
value. All agents are accepted by members of their class and rejected by members
of higher classes. Similarly, all agents find members of their class to be acceptable
and reject members of lower classes. Thus, agents marry within their class in finite
time.

By Proposition 1, in equilibrium, the agents’ pizzazz is strictly greater than their
acceptance cutoffs, except for agents at the lower bound of a class. When search
frictions vanish (e.g., when µ becomes infinitely large), the induced matching
converges to the unique stable matching (Eeckhout, 1999; Bloch and Ryder, 2000;
Adachi, 2003), which implies that married couples have the same pizzazz. Thus,
when search frictions vanish, the classes shrink and almost all of the agents’

4Abusing notation, we can think of σv as a subset of agents on the other side of the market whom v
accepts. Then, σ : [v, v]→ P([v, v]) is a correspondence, which we assume to be measurable.

5Assuming that agents’ use cutoff strategies is equivalent to assuming that they break indifference in
favor of accepting a match. The results in this paper are not sensitive to this assumption. In particular,
the results hold if indifferent agents accept matches with probability q > 0.
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acceptance cutoffs increase. These increases can be interpreted as an increase in
the agents’ welfare.

II. Coarse Reasoning in the Matching Market

Consider an agent who faces a decision whether to accept or reject a potential
partner. Since this decision has implications only when the potential partner ac-
cepts, the agent essentially compares the known payoff from marrying the partner
to the risky option of remaining single and continuing to search. Assessing the
latter option requires some understanding of the future behavior of agents of the
opposite sex.

Agents in our model have a coarse perception of the future behavior of agents
on the other side of the market. They understand the rate at which they are
accepted by potential partners, but do not discern exactly who finds them ac-
ceptable and who does not. The two most prominent approaches that capture
this idea are the partially cursed equilibrium (Eyster and Rabin, 2005) and the
analogy-based expectation equilibrium (Jehiel, 2005). In Section II.A, we take
the first approach, which was originally developed for Bayesian games, and adapt
it to our setting. This equilibrium concept captures the idea that agents make
mistakes with respect to the whole population and allows us to vary the size of
the mistake. In Section II.B, we take the second approach and apply it to our
model. This equilibrium concept captures the idea that agents make mistakes
with respect to only a fraction of the population and allows us to vary the size of
this fraction.

A. The Partially Cursed Equilibrium

Cursed agents have an imperfect understanding of the mapping from the other
agents’ pizzazz to their matching decisions. Fully cursed agents believe that every
agent of the opposite sex accepts them as a partner with a probability that equals
the average probability at which they are accepted by the entire population on
the other side of the market. Partially cursed agents understand that the other
agents’ behavior depends on their pizzazz but do not understand to what extent.
Specifically, a partially cursed agent v believes that an agent w on the other side
of the market will accept her/him as a partner with a probability that is a convex
combination of the true probability with which w accepts v and the average rate
at which v is accepted by the entire population.

Given a strategy profile σ, the objective probability that agent w accepts agent
v is equal to σw(v). The average rate at which the entire population accepts agent
v is

(1)

∫ v

v
σx(v)f(x)dx.
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Thus, a partially cursed agent v believes that agent w will accept her/him as a
partner with probability

(2) γv(w) = ψ

∫ v

v
σx(v)f(x)dx+ (1− ψ)σw(v),

where ψ represents the magnitude of the agents’ mistakes. Thus, ψ can be thought
of as a behavioral friction. When ψ = 0, agents have rational expectations. At
the other extreme, when ψ = 1, agents are fully cursed.

As an illustration, suppose that the median pizzazz in the population is wm
and that Av = {w|w < wm} for some man v. If man v is fully rational, then he
expects women whose pizzazz is higher than wm to accept him with probability
0, and women whose pizzazz is lower than wm to accept him with probability
1. A partially cursed man v with ψ = 0.1 expects women whose pizzazz is
higher than wm to accept him with probability 0.05, and women whose pizzazz
is lower than wm to accept him with probability 0.95. Thus, v overestimates the
probability of being accepted by women whose pizzazz is high and underestimates
the probability of being accepted by women whose pizzazz is low.6

Let U(âv, γv) be agent v’s perceived expected discounted payoff conditional on
holding beliefs γv(·) and using a cutoff âv. That is,

(1 + rdt)U(âv, γv) = µdt

∫ v

âv

γv(x)xf(x)dx+ U(âv, γv)
(
1− µdt

∫ v

âv

γv(x)f(x)dx
)
.

Rearranging and letting dt→ 0 yields

U(âv, γv) =

∫ v
âv
γv(x)xf(x)dx

η +
∫ v
âv
γv(x)f(x)dx

,(3)

where η = r/µ represents the frictions in the market.

DEFINITION 1: A strategy profile σ forms a partially cursed equilibrium if âv
is optimal given γv, for each v ∈M∪W.

We denote by U?v agent v’s perceived expected discounted payoff conditional
on using an optimal acceptance cutoff, and refer to it as agent v’s continuation
value. In equilibrium, agent v accepts a match with agent w if and only if w ≥
U?v , implying that âv = max {U?v , v}. The following lemma establishes that, in
equilibrium, agents with higher pizzazz have higher standards.

LEMMA 1: In equilibrium, âv and av are weakly increasing in v.

6All the results in the paper hold if the partially cursed equilibrium is modified so that agents’ beliefs
are correct with respect to agents who accept them and remain partially cursed with respect to agents
who reject them.
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The assumption that agents use cutoff strategies implies that agents with higher
pizzazz are accepted by more agents and, therefore, have better options in the
market. This directly implies that av is increasing in v. Moreover, since agents
with higher pizzazz can always imitate agents with lower pizzazz, it also implies
that âv is weakly increasing in v.

The monotonicity of the agents’ acceptance cutoffs implies that agent v is ac-
cepted by every agent whose pizzazz is lower than av and is rejected by every
agent whose pizzazz is higher than av. Thus, av pins down γv(·). Therefore, in
the remainder of the section, we write U(âv, av) instead of U(âv, γv).

Who Marries in Equilibrium. — Under the conventional rational expectations
model, if the distribution of agents on both sides of the market is symmetric,
then all agents marry in finite time. In our model, the agents’ coarse reasoning
makes some of them too selective to marry. The next lemma will be useful for
understanding who these eternal singles are.

LEMMA 2: Agent v marries in finite time in a symmetric equilibrium if and
only if

U(v, v) < v.(4)

Lemma 2 establishes a necessary and sufficient condition for an agent to marry
in a symmetric equilibrium. When Condition 4 is violated, an agent with an
opportunity value v will prefer remaining single to marrying agent v. Such an
agent exhibits a “Groucho Marx” type of behavior, as (s)he is unwilling to marry
agents who are willing to marry her/him.

In order to gain intuition for the condition’s necessity consider a woman w and
a man v. Observe that U(âw, aw) ≥ U(v, aw) since setting an acceptance cutoff
âw = v is not necessarily optimal. If man v accepts woman w in equilibrium, then
her opportunity value is at least v, that is, aw ≥ v. Since U is increasing in the
opportunity value, U(v, aw) ≥ U(v, v). It follows that U?w = U(âw, aw) ≥ U(v, v).
Thus, if U(v, v) > v, then U?w > v, and so every woman w that man v finds
acceptable prefers remaining single to marrying him. As a result, v cannot marry
in equilibrium.7

To gain intuition for the condition’s sufficiency, note first that, in a symmetric
equilibrium, either âv ≥ v ≥ av or âv ≤ v ≤ av. The reason for this is that
in a symmetric equilibrium man v accepts woman v if and only if she accepts
him. This argument implies that if agent v’s opportunity value is strictly greater
than v, then (s)he marries in finite time as âv < av in this case. Condition 4
implies that the optimal acceptance cutoff of an agent whose opportunity value
is v must be strictly lower than v (as the perceived continuation value is lower

7The intuition for the necessity of the condition when U(v, v) = v is more subtle and requires utilizing
the symmetry assumption.
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than the payoff from marrying an agent v). This has two consequences. First,
such an agent must marry in finite time. Second, since the optimal acceptance
cutoff is increasing in the opportunity value, the optimal acceptance cutoff of an
agent whose opportunity value is less than v must also be less than v. However,
av < v and âv < v cannot hold together in a symmetric equilibrium. Thus, when
Condition 4 holds, in a symmetric equilibrium, av ≥ v ≥ âv with at least one
strict inequality, and so agent v marries in finite time.

Observe that U(v, v) depends only on the primitives of the model. To see this,
note that if aw = v = âw, then γw(x) = ψF (v) for any x > âw. Thus,

U(v, v) =

∫ v
v ψF (v)xf(x)dx

η +
∫ v
v ψF (v)f(x)dx

=
ψF (v)(1− F (v))E[w|w > v]

η + ψF (v)(1− F (v))
.(5)

We can use the fact that U(v, v) is continuous and U(v, v) = U(v, v) = 0 to
establish that a strictly positive mass of agents with extreme pizzazz values marry
in finite time. The next comparative statics result follows directly from (5) and
shows that not all agents benefit from modern, less frictional, matching markets.8

PROPOSITION 2: The share of agents who marry in a symmetric equilibrium
is weakly increasing in η and weakly decreasing in ψ. Moreover, it converges to 0
as η goes to zero, for any ψ > 0.

Proposition 2 establishes that the share of eternal singles increases when the mar-
ket becomes less frictional. Note that an agent v marries in symmetric equilibrium
only if her/his opportunity value is at least v. Thus, if v marries, (s)he must be-
lieve that all agents of the opposite sex accept her/him with probability ψF (v)
or higher. When frictions become less intense, waiting becomes less costly. If v
thinks that top agents are achievable with probability ψF (v), (s)he is unwilling
to accept agents of her/his caliber or lower. For similar reasons, v will never be
accepted by agents of her/his caliber or higher, which makes it impossible for v
to marry when the market becomes less and less frictional.

Proposition 2 also establishes that the market collapses when the search fric-
tions vanish for any ψ > 0. Under rational expectations, the equilibrium outcomes
in our model converge to the unique pairwise stable matching. This means that
there is a discontinuity at ψ = 0: even slight departures from the rational ex-
pectations model can lead to radically different results when the meeting rate
becomes sufficiently high.

Overoptimism and Oversearch. — In the previous section, we showed that some
agents in our model may search indefinitely and never leave the market. We now
explore the forces underlying this excessive search. We show that coarse reasoning

8In Section III, we show that a similar result holds when the distribution of singles is endogenous.
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may lead to overoptimism, which, in turn, may lead to setting acceptance cutoffs
that are too high. Furthermore, we find that there are two groups of agents who
behave as if they were fully rational: one at the very top of the pizzazz distribution
and one at the very bottom.

To understand the behavior of cursed agents, we first have to understand the
mistakes they make. Cursed agents are correct about the average rate at which

agents on the other side of the market accept them, i.e.,
∫ v
v σx(v)f(x)dx =∫ v

v γv(x)f(x)dx for every v. However, because these cursed agents underesti-

mate the extent to which agents with higher pizzazz value have higher stan-

dards, they overestimate the rate of mutual acceptance, i.e.,
∫ v
âv
σx(v)f(x)dx <∫ v

âv
γv(x)f(x)dx whenever âv > v, unless av ∈ {v, v}, in which case v is treated

equally by everyone and makes no mistake. As a result, unless av ∈ {v, v} or
âv = v, agent v underestimates the time it it will take her/him to get married.

Unfortunately, the above mistake is not the only one cursed agents make. Given
an acceptance cutoff âv, a cursed agent v falsely expects to marry someone whose
pizzazz value is in [âv, v]. However, if v marries (which is not guaranteed, as
established in Proposition 2), then (s)he marries an agent with pizzazz value in
[âv, av], where av ≤ v. Thus, unless av ∈ {v, v}, agent v overestimates the payoff
(s)he will obtain in a future marriage.

We can conclude that, unless av ∈ {v, v}, agent v overestimates her/his prospects
in the market. The next result formalizes the above intuitions and shows that this
overoptimism leads to oversearch and delay in matching for moderately desirable
agents.

PROPOSITION 3: Let [v1, v] be the top class in Proposition 1. In a partially
cursed equilibrium, every agent v ∈ [v1, v] behaves as if (s)he were rational. If
v1 > v, then there exists a threshold v2 ∈ (v, v1) such that every agent v ∈ [v, v2)
behaves as if (s)he were rational, while every agent v ∈ [v2, v1) searches longer
than a rational agent would.

Agents who are accepted by all other agents are unaffected by cursedness as
all other agents treat them equally. They correctly estimate both the expected
time it will take them to marry and their future spouse’s expected pizzazz. Thus,
they behave as if they were fully rational. As a result the top class under partial
cursedness is identical to the top class under rational expectations.

Agents at the bottom of the pizzazz distribution who accept all other agents
never reject any matches and, in particular, they never reject matches that a fully
rational agent would accept. Therefore, despite their overoptimism, they behave
as if they were fully rational.

All other agents overestimate the expected pizzazz of their future spouse and
underestimate the time it will take them to get married. Therefore, they use an
acceptance cutoff that is higher than the one a rational agent would use. In other
words, due to their overoptimism about their prospects in the market, they reject
matches that a fully rational agent would accept.
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Characterization and Existence. — In this section, we construct a symmetric
equilibrium in which there is block segregation. Our construction shows that, in
general, there are an infinite number of such equilibria. However, by Condition
4, the set of agents who marry in a symmetric equilibrium is unique.

In constructing the symmetric equilibria, we use the fact that by Condition
4 [v, v] is partitioned into maximal intervals in which either all agents marry
or none do. We refer to these intervals as marriage intervals and singles inter-
vals, respectively. The transition between intervals occurs at points v such that
U(v, v) = v. We treat each interval separately and partition it into a potentially
infinite number of classes, in which all agents share the same acceptance cutoff
and opportunity value.

As in the rational expectations case, a top class exists and it is possible to
construct a sequence of classes starting from this class. However, unlike in the
rational expectations case, the sequence will not necessarily cover [v, v]. We show
that when it does not, it converges to the highest pizzazz v such that U(v, v) = v.
That is, these classes cover only the top marriage interval.

The main challenge in the proof is that in any other interval but the top one
there is no upper class from which we can start the construction. Nevertheless,
we show that it is possible to define an arbitrary initial class in the interior of
each interval and construct two unique sequences of classes on each of the initial
class’s sides. The sequences cover the interval and converge to its endpoints. The
arbitrariness in defining the initial class implies that there are an infinite number
of equilibria whenever [v, v] is partitioned into more than one interval.

Formally, by Condition 4, we can partition [v, v] into maximal intervals in which
agents either eventually marry or remain single forever. We say that L is a
marriage interval if L is a maximal interval such that U(l, l) < l for all l ∈ L. An
interval L is said to be a singles interval if either L is a maximal interval such
that U(l, l) > l for all l ∈ L, or U(l, l) = l for all l ∈ L. In the latter case, L is
often a singleton. Denote the closure of L, cl(L), by [l, l].

A class is a nondegenerate interval in which agents have identical acceptance
cutoffs and opportunity values. In classes contained in marriage intervals, or
“marriage classes,” agents’ acceptance cutoffs are equal to the class’s infimum
and their opportunity values are equal to its supremum. In classes contained in
singles intervals, or “singles classes,” agents’ acceptance cutoffs are equal to the
class’s supremum and their opportunity values are equal to its infimum. Formally,
a class is a nonempty interval C such that for every v, w ∈ C, it holds that
av = aw, âv = âw and {av, âv} = {c, c}, where [c, c] = cl(C) and c 6= c .

The following lemma is key in establishing that, in equilibrium, if a mar-
riage/singles interval contains one class, then it is covered by classes.

LEMMA 3: In equilibrium, if a marriage/singles interval L contains a class C,
then (i) unless c = v, L contains a unique class C ′ such that c = c′, and (ii)
unless c = v, L contains a unique class C ′′ such that c′′ = c.
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By Lemma 3, if a marriage/singles interval L contains a finite number of classes,
then L = [v, v]. Moreover, an infinite sequence of adjacent classes must converge
to some v? satisfying U(v?, v?) = v?. To see this, let Cn be an infinite sequence
of adjacent classes and note that cn and cn both converge to the same pizzazz
value, v. As a result, both U(cn, cn) and U(cn, cn) converge to U(v, v). Moreover,
by optimality, U(cn, cn) = cn in marriage classes and U(cn, cn) = cn in singles
classes, and so U(cn, cn) and U(cn, cn) converge to v. Thus, U(v, v) = v. We
can conclude that for any marriage/singles interval L, it holds that if l 6= v then
l = U(l, l) and if l 6= v then l = U(l, l). The next corollary follows immediately.

COROLLARY 1: If a marriage/singles interval contains one class, then it is
covered by classes.

Due to the search frictions, the agents’ continuation values, and hence their
optimal acceptance cutoffs, are bounded away from v. Thus, in equilibrium,
there are two sets of agents, one on each side of the market, who are accepted by
every agent of the opposite sex. All of these agents have the same continuation
value and, therefore, they use the same acceptance cutoff, which, in turn, defines
the set of agents who are accepted by all the other agents on the other side of
the market. These agents form the top class and are uniquely determined by the
primitives of the model. Thus, Corollary 1 and the existence of an upper class
(Proposition 3) imply the following corollary.

COROLLARY 2: In equilibrium, the top marriage interval is covered by classes
in a unique manner.

If η is sufficiently large such that U(v, v) < v for all v, implying that all agents
marry in equilibrium, then, by Corollary 2, the equilibrium is unique. Otherwise,
the equilibrium is uniquely defined only in the top marriage interval.

In the following proposition, we show equilibrium existence by construction.9

PROPOSITION 4: There exists η such that if η > η, then there exists a unique
equilibrium and all agents marry and, if η < η, then there exist an infinite number
of equilibria, in each of which there is a set of agents who remain single forever,
which is identical across equilibria.

Discussion: Symmetry in the Model. — Throughout the analysis, we focused
on symmetric equilibria and studied the case where the men’s and women’s levels
of strategic sophistication are identical. These assumptions allowed us to convey
the main messages succinctly. However, our key insights are not sensitive to these
assumptions. We now discuss the implications of relaxing these assumptions.

9In the equilibria we construct, all agents are partitioned into classes. However, when η < η, there are
additional equilibria in which the top marriage interval is covered by classes while in every other interval
there are no classes at all. Thus, there are equilibria in which close “types” do not have completely
disjointed sets of potential partners except in the top marriage interval.
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Asymmetric Equilibria

The cornerstone of our analysis of symmetric equilibria was the necessary and
sufficient condition for marriage, U(v, v) < v. In asymmetric equilibria, this
condition is necessary for marriage, but it is no longer sufficient. Thus, the agents
who marry in a symmetric equilibrium form a superset of the agents who marry
in any asymmetric equilibrium.

When U(v, v) > v, agent v cannot marry in asymmetric equilibria. To see
why, note that if a man (woman) v accepts a match with a woman (man) w,
then aw ≥ v. Thus, U(âw, aw) ≥ U(v, aw) ≥ U(v, v) > v such that w prefers
continuing searching to marrying v. Hence, agent v is rejected by every agent
whom v accepts and remains single forever.

In order to illustrate that U(v, v) < v is not sufficient for marriage in asymmetric
equilibria, let η < η and denote the lowest v for which U(v, v) = v by v?. Note
that v? > v since U(v, v) = 0. Set âv = v? for all women with pizzazz v ∈
[v, v?] and âv = v for all men with pizzazz v ∈ [v, v?]. For all other agents, set
acceptance cutoffs as in one of the symmetric equilibria constructed in the proof
of Proposition 4. Note that (i) av = v? for all women with pizzazz v ∈ [v, v?],
which implies that âv = v? is optimal for these women, and (ii) av = v for all
men with pizzazz v ∈ [v, v?], which implies that âv = v is optimal for these men.
As in the symmetric equilibrium, agents whose pizzazz is lower than v? accept
all agents whose pizzazz is higher than v?, which implies that the higher-pizzazz
agents’ behavior is optimal in the present case as well. Hence, the strategy profile
we constructed is an equilibrium in which low-pizzazz agents never marry, in
contrast to the symmetric equilibrium, in which these agents always do.

Asymmetric Strategic Sophistication

The assumption that both sides of the market are symmetric in their level of
strategic sophistication is reasonable in the context of a marriage market. How-
ever, in other contexts, it makes sense to think that agents on different sides of
the market differ in this respect. For instance, in the context of job search, em-
ployers engage in the market more frequently than job-seekers, which may lead
to a better understanding of the market.

As a rough approximation of this idea, we now modify the baseline model by
assuming that agents on one side of the market (women) are fully rational while
agents on the other side of the market (men) are partially cursed. A natural
question is whether the existence of fully rational agents on one side of the market
alleviates the problem of oversearch. The next result shows that not only is the
answer to this question negative, but, in fact, the share of eternal singles can
increase on that side of the market.

PROPOSITION 5: There exists a unique equilibrium. Relative to the case where
all agents are partially cursed, in this equilibrium, it holds that
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• The acceptance cutoffs, opportunity values, and share of men who marry in
finite time are weakly higher.

• The acceptance cutoffs, opportunity values, and share of women who marry
in finite time are weakly lower.

In equilibrium, there is block segregation. The men’s acceptance cutoffs pin
down the women’s classes and the women’s acceptance cutoffs pin down the men’s
classes. However, since the women’s and the men’s levels of sophistication are
different, the classes are asymmetric. The men’s classes are just like in the rational
expectations model (as they are pinned down by the behavior of fully rational
women), and so all men marry in equilibrium. On the other hand, the women’s
classes are virtually identical to the ones obtained in the top marriage interval
under partial cursedness (as they are pinned down by the behavior of partially
cursed men) and, therefore, all women below the top marriage interval never
marry in equilibrium (unlike in the partially cursed symmetric equilibrium in
which some of these women do marry).

Note that fully rational women do not overestimate their prospects in the mar-
ket. As a result, compared to the case where both sides of the market are partially
cursed, they choose lower acceptance cutoffs. The women’s lower cutoffs increase
the men’s opportunity values, which, in turn, makes the men increase their accep-
tance cutoffs. The increase in the men’s acceptance cutoffs lowers the women’s
opportunity values and makes the women lower their acceptance cutoffs even
further.

B. The Analogy-Based Expectation Equilibrium

In the previous section, we introduced a behavioral friction into the two-sided
search framework. We assumed that agents’ beliefs regarding the behavior of each
individual on the other side of the market are affected by the average behavior
of the entire population on that side, where the partial cursedness parameter
allowed us to vary the magnitude of the agents’ mistakes. We established that
even a small departure from the rational expectations assumption can lead to
extremely different outcomes.

In this section, we introduce a different behavioral friction. We assume that
agents’ beliefs regarding each individual on the other side of the market depend on
the behavior of only a subset of agents on that side, whose pizzazz is similar to that
individual’s pizzazz. The size of these subsets allows us to capture the magnitude
of the agents’ mistakes: the smaller the subsets, the smaller the departure from
the conventional model. We show that regardless of the size of these subsets,
when the market becomes less frictional, there are fewer matches and more agents
remain single forever.

We use the analogy-based expectation equilibrium (ABEE) (Jehiel, 2005) to
incorporate this idea into the model. In an ABEE, players bundle different con-
tingencies into exogenously given categories and fail to distinguish between the
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other players’ behavior in different contingencies that belong to the same cate-
gory. We adapt this concept by assuming that each agent divides the agents on
the other side of the market into categories. The agent then believes that all
agents who belong to the same category behave in the same manner. Specifically,
each agent v believes that every member of a category accepts her/him as a part-
ner with a probability equal to the average probability with which v is accepted
by all of the category’s members.

To illustrate the agents’ beliefs in an ABEE, consider a woman w who is ac-
cepted by men whose pizzazz is lower than the median and rejected by all other
men. If w were fully rational, then she would realize that only low-pizzazz men
are willing to marry her. In an ABEE, when there is only one category, woman
w thinks that all men are equally likely to accept her as a partner. Since half
the men find her acceptable, she thinks that each man will accept her with prob-
ability 0.5. This case is equivalent to full cursedness (i.e., ψ = 1) as in Section
II.A. Now, suppose that the men are partitioned into three adjacent categories of
equal mass. Since all men in the bottom category accept woman w, she correctly
believes that all men in this category accept her as a partner. Similarly, she cor-
rectly expects each man in the top category to reject her. However, woman w’s
beliefs are inaccurate with regard to men in the intermediate category, whom she
expects to accept her with probability 0.5 regardless of their pizzazz.

As this example illustrates, unlike in the previous section, agents do not nec-
essarily think that all other agents are achievable. When all agents in a specific
category reject an individual, the latter understands that these agents are out of
her/his league. The individual’s beliefs are coarse only with respect to categories
in which a fraction of the population accepts her/him.

Formally, we assume that the agents on each side of the market are partitioned
into k adjacent cells of the same mass10 P1, ..., Pk. We denote pj := sup(Pj) and
p
j

:= inf(Pj). Every agent v believes that each w ∈ Pj accepts her/him as a part-

ner with probability βvj . We say that a profile of beliefs β = (βvj)v∈M∪W,j∈{1,...,k}
is consistent with a profile of strategies σ if

βvj =

∫
Pj∩Av(σ) f(x)dx∫

Pj
f(x)dx

for every v ∈M∪W and every cell j ∈ {1, ..., k}.

DEFINITION 2: A profile of strategies σ and a profile of beliefs β form an ABEE
if β is consistent with σ and, for every v ∈ M ∪ W, σv is a best response to
(βvj)j∈{1,...,k}.

In order to use the toolbox developed in the previous sections, we define γv(w) :=
βvj for w ∈ Pj . Thus, the expected discounted payoff given beliefs γv and accep-

10Our results are not sensitive to the assumption that each cell contains the same mass of agents.
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tance cutoff âv, U(âv, γv), is as given in (3).
The next lemma establishes that, in an ABEE, agents with higher pizzazz have

higher standards. Its proof is identical to that of Lemma 1 and, therefore, omitted.

LEMMA 4: In an ABEE, âv and av are weakly increasing in v.

Lemma 4 implies that all agents whose pizzazz is lower than av accept agent v.
Since, by definition, agents whose pizzazz is higher than av reject v, there exists
at most one cell in which different cell members treat v differently. Specifically,
if av 6∈ Pj , then either all of the cell’s members reject v or all of them accept v.
Either way, v’s beliefs about the cell’s members’ behavior are correct. On the
other hand, if av ∈ Pj , then agent v’s beliefs regarding that cell are coarse.11

Hence, each agent holds accurate beliefs regarding the behavior of agents in at
least k − 1 cells. The larger k is, the larger the share of the population about
whom the agents’ estimates are accurate. Thus, k is a measure of the agents’
mistakes. The next corollary formalizes this discussion.

COROLLARY 3: In a symmetric ABEE, agent v correctly assesses the proba-
bility with which agent w ∈ int(Pj) accepts her/him as a partner if and only if
av 6∈ int(Pj).

Since agents’ acceptance cutoffs are monotonic (Lemma 4), we can again write
U(âv, av) instead of U(âv, γv) as we did in Section II.A. As in that section, U
is weakly increasing in the opportunity value. Moreover, for every v such that
U(v, v) < v and every w > v, U(·, v) is weakly decreasing in its first argument at
U(w, v). Once this is established, the proof of Lemma 2 holds for ABEE (with a
different expression for U(âv, av) in (A1)). Lemma 5 states this formally.

LEMMA 5: Agent v marries in a symmetric ABEE if and only if U(v, v) < v.

We now derive the formula for U(v, v). An agent who uses an acceptance cutoff
v ∈ Pj and whose opportunity value is v rejects all agents who belong to lower cells
and, by Corollary 3, expects agents in higher cells to reject her/him. Thus, our
agent understands that mutual acceptance is only possible when meeting agents
who belong to Pj . Given an acceptance cutoff of v, the share of agents in Pj that
our agent accepts is k(F (pj)−F (v)). The probability of meeting a member of Pj
is 1/k. Given an opportunity value of v, our agent expects to be accepted by each
member of Pj with probability k(F (v)−F (p

j
)). Thus, our agent expects mutual

acceptance with probability k(F (v) − F (p
j
))(F (pj) − F (v)) and, conditional on

marriage, an expected payoff of E[w|v < w < pj ]. Hence, for every v ∈ Pj ,

(6) U(v, v) =
k(F (v)− F (p

j
))(F (pj)− F (v))E[w|v < w < pj ]

η + k(F (v)− F (p
j
))(F (pj)− F (v))

.

11If av = p
j

or av = pj , then agent v perfectly understands the behavior of all agents with the possible

exception of agent av .
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Since U(v, v) is continuous in v and U(v, v) = 0 at the cells’ boundaries, the
condition for marriage is always satisfied around the boundaries of each cell, and,
in particular, at v and v. Hence, only agents with interior pizzazz values may
remain single forever.

In the next result, we use (6) and Lemma 5 to obtain comparative statics. As in
the previous section, when the market becomes less frictional, the share of agents
who search indefinitely increases and, when search frictions vanish, the market
collapses.

PROPOSITION 6: The share of agents who marry in a symmetric ABEE is
weakly increasing in η and converges to 0 when η goes to 0.

In an ABEE, the market collapses as search frictions vanish even though agents
do not necessarily expect to marry agents who are significantly more desirable
than themselves. To see this, note that when search frictions are sufficiently small,
av and v belong to the same cell.12 Thus, agents misestimate the probability with
which they are accepted only with regard to agents who belong to the same cell
as themselves. Hence, when search frictions vanish, the agents’ expectations are
realistic in the sense that they do not expect to marry agents who are out of their
league. These expectations are different from the agents’ beliefs in a partially
cursed equilibrium, which assign strictly positive probability to marrying agents
with extremely high pizzazz value.

While under both solution concepts the share of eternal singles increases when
the market becomes less frictional, the characteristics of these eternal singles
can be very different. In an ABEE, agents close to the boundary of each cell
always marry (including cells that contain agents with intermediate pizzazz value).
However, in a partially cursed equilibrium, when η is sufficiently small, only agents
with extremely high or extremely low pizzazz value marry. Hence, for small values
of η there is one singles interval under partial cursedness while the number of
singles intervals in an ABEE is equal to the number of cells.

The Relation Between Partially Cursed and Analogy-based Expectation
Equilibria

Miettinen (2009) shows that any partially cursed equilibrium of a Bayesian game
corresponds to an analogy-based expectation equilibrium of the same game with
an extended state space.13 While the setting is different, a similar result holds
in our model as well. Suppose that each agent v believes that a share of ψ of
the agents on the other side of the market are romantic and a share of 1− ψ are
not, where being romantic is unobservable, payoff-irrelevant, and independent
of pizzazz. The analogy partition consists of a continuum of singleton analogy
classes, one for each unromantic type, and one analogy class for all the romantic

12With the possible exception of agents at a cell’s boundaries.
13Formally, the equivalence Miettinen establishes is between Jehiel and Koessler (2008) version of

ABEE and the partially cursed equilibrium.
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types. Thus, in an ABEE agent v believes that an agent w on the other side of

the market accepts her/him with probability ψ
∫ v
v σx(v)f(x)dx + (1 − ψ)σw(v),

exactly as in the partially cursed equilibrium.

III. Exogenous Inflow

Throughout the analysis, a stationary distribution of singles was maintained by
the assumption that every agent who leaves the market is immediately replaced
by an agent with the same pizzazz. In this section, we relax this assumption and
let the flow of agents into the market be exogenous. To maintain the stationarity
of the singles distribution, we require that, in equilibrium, the flow out of the
market be equal to the flow into the market.

We follow Burdett and Coles (1997) by assuming that agents on both sides of
the market enter at a flow rate β. New entrants are randomly drawn from a
differentiable CDF G with a density function g that satisfies 0 < g ≤ g(v) ≤ g <
∞ for any v ∈ [v, v]. Furthermore, as in Burdett and Coles (1997), we assume
that the lifetime of each agent follows an exponential distribution with parameter
δ > 0; i.e., δdt is the probability that any agent dies in a short time interval dt.
Adding the possibility of death to our baseline model changes only the expression
for η (see (8)) and has no effect on any of the previous results.

While in the market, agents randomly meet singles of the opposite sex according
to a quadratic search technology: given a distribution of singles F , agents meet
potential partners at a rate µF (v), where F (v) is the mass of singles on each side
of the market. This is consistent with our baseline model in which F (v) = 1 and
the meeting rate is µ. Meetings are random: agents meet agents of the opposite
sex with pizzazz value in [v1, v2] at a flow rate proportional to their mass in the
population µ[F (v2)− F (v1)].

We assume that agents are partially cursed and extend the definition of partially
cursed equilibrium to include the requirement that the distribution of singles F
is in a steady state. In other words, in addition to the requirement that agents’
strategies be optimal given their cursed beliefs, the flow of agents into and out of
the market must be balanced.14

DEFINITION 3: A partially cursed steady-state equilibrium is a profile of sta-
tionary strategies σ and a distribution F that satisfy the following conditions for
every v ∈ [v, v]:

• Balanced flow

(7) βg(v) = f(v)

(
δ + µ

∫ v

v
σv(x)σx(v)f(x)dx

)
.

14Generalizing the analogy-based expectation equilibrium is more involved and requires more notation.
Nonetheless, it is possible to obtain the results in this section under a generalized ABEE as well.
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• Partially cursed beliefs

γv(w) = ψ
1

F (v)

∫ v

v
σx(v)f(x)dx+ (1− ψ)σw(v).

• Optimal strategies âv = max{v, U?v }, where

U?v =

∫ v
âv
γv(x)xf(x)dx

η +
∫ v
âv
γv(x)f(x)dx

,(8)

and η = (r + δ)/µ.

PROPOSITION 7: A partially cursed steady-state equilibrium exists.

The proof is essentially an adaptation of Proposition 1 in Smith (2006) that
allows for cursed beliefs. Smith’s singles market is slightly different from ours as,
in his model, the inflow of agents into the market is via dissolution of existing
marriages. However, as noted by Lauermann, Nöldeke and Tröger (2020), the
balanced-flow conditions in both models are essentially equivalent. This obser-
vation implies that the fundamental matching lemma (Shimer and Smith, 2000),
which Smith’s proof is based on, holds in our setting as well.

Our equilibrium characterization results continue to hold in this general setting
as they rely on the stationarity of the distribution of singles but not on how this
stationarity is obtained. However, we can no longer use the tools developed to
obtain comparative statics with respect to µ as changes in µ affect the distribution
of singles in the market. The next result shows that, nonetheless, the main insight
of the paper holds.

PROPOSITION 8: The share of agents who marry in a symmetric partially
cursed steady-state equilibrium converges to 0 as µ goes to ∞.

In Section II.A, we established that a partially cursed agent will not settle for
an agent of her/his caliber if (s)he expects to meet high-pizzazz agents of the
opposite sex frequently enough. For a fixed distribution of singles, this effect
occurs when µ is sufficiently large. In the steady-state model of this section, the
distribution of singles depends on µ and, potentially, the mass of agents at the top
of the pizzazz distribution can be smaller for large values of µ such that the rate
at which singles meet high-pizzazz agents of the opposite sex does not necessarily
go up with µ. The key challenge in the proof is to show that although the mass
of agents with high pizzazz goes down when µ becomes large, the rate at which
agents meet members of the top class, µ(F (v) − F (âv)), goes to infinity when µ
goes to infinity, which guarantees the desired result.
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IV. Concluding Remarks

We studied a model of the marriage market in which the participants’ reason-
ing is coarse. In equilibrium, agents who underestimate the correlation between
desirability and selectivity overvalue their prospects in the market as they put
too much weight on the possibility of marrying highly attractive individuals. As
a result, they set standards that are too high and search longer than is optimal.
This leads to prolonged singlehood and may even result in an eternal search. Our
results imply that when agents are not fully rational, technological advances that
thicken markets and enable faster and more efficient search can exacerbate the
agents’ biases and make them worse off overall.

Throughout the analysis we assumed that agents who marry obtain the pizzazz
of their spouse or, in the words of Burdett and Coles (1997), “Looking in the
mirror to admire one’s own pizzazz does not increase utility.” While this is natural
in some contexts, in others there is some complementarity between partners. The
main results and intuitions of the paper hold in many of these settings (e.g., when
the payoff function is multiplicatively separable, as analyzed in Eeckhout 1999).
In fact, as long as agents with higher pizzazz have higher standards, which is the
case in any form of assortative mating, our qualitative results hold.

Although we use the marriage terminology in this paper, we wish to stress
that the model and the main insights have implications for the labor market as
well. As in the marriage market, new search technologies have changed the way
people search for a job. For example, social networks such as LinkedIn enable
employers and job-seekers to match faster than ever before. In the context of job
search, additional factors may come into play as employers and potential hires
can negotiate wages. However, as long as utility is not fully transferable and the
job-seekers’ preferences over employers are correlated, there will be some degree
of vertical heterogeneity and our insights will remain valid.

We conclude by discussing a few extensions and modifications of the baseline
model.

Market Segmentation

In practice, improvements in the matching algorithm allow individuals to meet
more relevant people and fewer irrelevant people in a given time. Throughout the
paper, we studied the implications of faster search, which is equivalent to meeting
both more relevant and irrelevant individuals in a given time span, and established
that when agents’ reasoning is coarse faster search leads to overoptimism and
oversearch. We now examine the effect of meeting fewer irrelevant people by
segmenting the market such that individuals meet only people of relatively similar
pizzazz.

When agents’ reasoning is coarse, partitioning the market into smaller segments
consisting of agents with similar pizzazz can help them obtain better outcomes.15

15When agents are fully rational, partitioning the market into segments coarser than the class partition
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Segmentation reduces the negative externalities imposed by irrelevant agents of
the opposite sex, bringing the agents’ expectations closer to rational expectations.
To see how, consider a woman w. When the market is segmented, she no longer
meets men with significantly lower pizzazz whom she rejects but who accept her.
This reduces the probability with which she believes that other, more desirable,
men accept her. Second, she no longer meets men with significantly higher pizzazz
whom she falsely believes that she can marry. This reduces her perceived expected
value from future matches. Both effects reduce woman w’s perceived value of
remaining single and continuing to search.

In the Appendix, we formalize the above argument and establish that if a mar-
ket with eternal singles is segmented, then their share strictly decreases. More-
over, the proof shows that agents’ perceived continuation values are lower in the
segmented market. Our analysis has two implications. On the one hand, segmen-
tation can help agents obtain better outcomes when the speed of search is high.
On the other hand, from the agents’ naive perspective, segmentation reduces
welfare, which could make segmented platforms less attractive to them.

Models of Overoptimism

One insight of this paper is that coarse reasoning can lead individuals to overesti-
mate their prospects in the marriage market.16 This overoptimism leads agents to
oversearch and may result in some agents being eternal singles. A natural ques-
tion that arises is whether other forms of overoptimism lead to similar effects.
In general, overoptimism leads to delay in matching: agents who overestimate
the prospect of remaining single typically reject matches a rational agent would
accept. However, not every form of overoptimism leads to indefinite search.

Whenever agents perfectly understand which agents of the opposite sex are
achievable they marry in finite time. For example, suppose that agents overesti-
mate the rate at which they meet other singles; that is, they overestimate µ, but
are otherwise fully rational. In this case, agents’ equilibrium behavior is as in the
standard rational expectations model, only with µ′ > µ. Thus, there is a unique
equilibrium and, in this equilibrium, all agents marry in finite time (although it
may take them more time to marry than it would if they were to hold correct
expectations).

Agents who assign a strictly positive probability to marrying agents who reject
them may remain eternal singles. This occurs when agents’ reasoning is coarse,
but also in other models. As an illustration, consider a model in which agents
overestimate their own pizzazz—each agent v falsely believes that her/his pizzazz
is min{v + ∆, v}—but otherwise are fully rational. If the meeting rate is suffi-

has no effect on the equilibrium outcomes.
16This finding is consistent with the experimental literature. For example, in a comprehensive review,

Camerer (1997) states that “dozens of studies show that people generally overrate the chance of good
events, underrate the chance of bad events and are generally overconfident about their relative skill or
prospects.”
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ciently high, in equilibrium, there are agents who will search indefinitely, believing
that their opportunity value is higher than it really is.17
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Appendix: Proofs

Proof of Lemma 1. Let v < w. Since agents use cutoff strategies, it follows that
Av ⊆ Aw. Hence, av ≤ aw. Moreover, Av ⊆ Aw also implies that γv(x) ≤ γw(x)
for every x ∈ [v, v]. Hence, if agent w were to use agent v’s optimal acceptance
cutoff, then w would obtain a perceived expected discounted payoff of at least
U?v . Hence, U?w ≥ U?v and, thus, âw ≥ âv.

Proof of Lemma 2. For any acceptance cutoff âv and opportunity value av,

U(âv, av) =

∫ v
âv

(ψF (av) + (1− ψ)σx(v))xf(x)dx

η +
∫ v
âv

(ψF (av) + (1− ψ)σx(v))f(x)dx
.(A1)

In a symmetric equilibrium, if agent v rejects agents whose pizzazz is v, then v
is rejected by agents with pizzazz v on the other side of the market as well. That
is, âv > v implies av ≤ v. By the same logic, âv ≤ v implies av ≥ v. Note that
agent v marries in finite time if and only if âv < av. Thus, agent v marries in
finite time if and only if âv ≤ v ≤ av, with at least one strict inequality.

To show necessity, let U(v, v) ≥ v and consider an equilibrium. First, if av < v,
then the necessary condition for marriage above is violated. Second, if av ≥ v,
then âv ≥ U?v = U(âv, av) ≥ U(v, av) ≥ U(v, v) ≥ v, where the second inequality
follows from âv being optimal and the third one follows from (A1) being increasing
in its second argument. This contradicts the necessary condition for marriage.

To show sufficiency, let U(v, v) < v. We start by assuming that v > v and
take care of v = v later. Assume to the contrary that v does not marry, that
is, av ≤ âv. In a symmetric equilibrium, av ≤ âv implies that av ≤ v ≤ âv.
Optimality of âv implies that âv = max{v, U(âv, av)}. Since âv ≥ v > v, it
holds that U(âv, av) = âv ≥ v. Since (A1) is increasing in its second argument,
U(âv, v) ≥ v. Moreover, since U(w, v) is decreasing in its first argument for any
w > v if U(v, v) < v, it holds that U(v, v) ≥ U(âv, v) ≥ v, which violates the
assumption that U(v, v) < v.

We now show that agent v marries in equilibrium (note that U(v, v) < v). As-
sume to the contrary that v remains single and, therefore, av ≤ v. Thus, âv > v
and U?v > v for every v > v. Denote by z the opportunity value that induces both
an optimal acceptance cutoff and continuation value v. Since v > 0, it follows
that z > v. Note that for any v ∈ (v, âz), it holds that av ≤ z. Thus, for any
such v, U?v ≤ v, in contradiction to âv > v being part of an equilibrium. We can
conclude that av 6= v. Thus, av > v. By symmetry, âv = v and the sufficient
condition for marriage av > âv holds.

Proof of Proposition 2. From (5), we can see that U(v, v) is strictly increasing
in ψ and strictly decreasing in η = r/µ. Moreover, at the η = 0 limit, U(v, v)
converges to E[w|w ≥ v] > v for all v ∈ (v, v). Thus, the share of agents who
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satisfy Condition 4 is decreasing in ψ, increasing in η, and converges to 0 when η
goes to 0.

Proof of Proposition 3. This proof consists of three steps. First, we show that
every agent v ∈ [v1, v] behaves as if (s)he were fully rational. Second, we establish
the existence of a threshold v2 > v such that âv = v for every v < v2. Lastly,
we show that agents whose pizzazz is lower than v1 overestimate the prospect of
remaining single and, if their pizzazz is also greater than v2, they oversearch. If
their pizzazz value is below v2, then they behave as if they were fully rational.

Due to the search frictions, U?v < v. Hence, âv < v. Denote v1 := âv and
consider v ≥ v1. By Lemma 1, v is accepted by all agents of the opposite sex, and
so γv(w) = σw(v) = 1 for any w. Thus, v forms correct expectations and, as a
result, behaves as if (s)he were fully rational. Since a cutoff of âv = v1 is optimal
given av = v (both under rational expectations and under partial cursedness), it
follows that [v1, v] is the top class in Proposition 1.

In order to establish the threshold v2, recall that U(v, v) = 0 < v. Thus, agents
at the bottom of the distribution marry in equilibrium. Hence, âv = v for some
v > v. By Lemma 1, there exists a maximal v2 > v such that âv = v for every
v < v2.

Next, we show that if v2 < v1, then agents whose pizzazz is v ∈ [v2, v1) over-
search and that agents whose pizzazz is lower than v2 behave as if they were fully
rational.

Let v be such that av > âv. Consider agent v’s perceived probability of mar-
riage. Agent v believes that, conditional on accepting a match, (s)he will be
accepted with probability

ψF (av) + (1− ψ)
F (av)− F (âv)

1− F (âv)
.(A2)

However, conditional on accepting a match, v is accepted with probability

F (av)− F (âv)

1− F (âv)
,

which is smaller than (A2) unless âv = v or av = v (in either case, the two
expressions are equal and agent v correctly estimates this probability). Thus, if
v ∈ [v2, v1), then (s)he underestimates the time it will take her/him to marry.

Now consider agent v’s perceived expected payoff from marriage. Agent v will
marry an agent whose expected pizzazz is E[w|âv ≤ w < av]. However, v believes
that (s)he will marry an individual whose expected pizzazz is

ψF (av)(1− F (âv))E[w|âv ≤ w] + (1− ψ)(F (av)− F (âv))E[w|âv ≤ w < av]

ψF (av)(1− F (âv)) + (1− ψ)(F (av)− F (âv))
,
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which is higher than E[w|âv ≤ w < av], unless av = v, in which case the two
expressions are equal. Thus, if v < v1, then (s)he overestimates the expected
pizzazz of her/his eventual partner.

We have seen that, unless av = v, in which case v is correct, agent v’s perceived
discounted expected payoff, U?v , is higher than the actual one. Since âv ∈ {U?v , v},
whenever the agent chooses an acceptance cutoff âv > v, it is too high as well.
It follows that every v ∈ [v2, v1) searches longer than a rational agent would.
Finally, if setting a cutoff âv = v is optimal given U?v , then it is also optimal given
the correct expected payoff, which is weakly lower. Hence, every agent whose
pizzazz is v ≤ v2 behaves as if (s)he were fully rational.

To complete the proof, let v be such that âv ≥ av. Recall that av > v and, by
monotonicity, av > v for all v > v. Thus, agent v can marry by setting a low
enough cutoff. However, agent v marries with probability 0 and gains an actual
expected payoff of 0. Thus, the agent’s acceptance cutoff is higher than optimal
and the agent searches longer than a rational agent would given av.

Proof of Lemma 3. Assume that C is a marriage class and c 6= v. By the
definition of a class, âv ≥ c for any agent v > c. Since C is in a marriage interval,
lim
v→c+

âv = c. There exists a unique pizzazz value ac > c such that an acceptance

cutoff of c is optimal given an opportunity value ac. Thus, ac = lim
v→c+

av, and, as

a result, âac = c. By monotonicity, âv = c for any v ∈ (c, ac). This implies that
av = ac for all such v. Therefore, C ′ = [c, ac) is a class.

Assume that C is a singles class and note that c 6= v. For any v > c, it
holds that av ≥ c. Since C is in a singles interval, lim

v→c+
av = c. There exists a

unique acceptance cutoff âc > c that is optimal given an opportunity value c. By
monotonicity, av = c for any v ∈ (c, âc). This implies that âv = âc for all such v.
Therefore, C ′ = [c, âc) is a class.

The proofs of the existence of C ′′ follow the same logic and are omitted for
brevity.

Proof of Proposition 4. We consider each marriage/singles interval separately
and define, for every agent v, an acceptance cutoff âv. For each agent v such
that U(v, v) = v, set âv = v. In the remainder of the proof, singles intervals are
assumed to contain only agents with U(v, v) > v.

First, we show that, for any opportunity value a ∈ L, there exists an acceptance
cutoff â ∈ L such that â is optimal given a. Let L be a marriage/singles interval
such that v /∈ L, and let a ∈ L. If L is a marriage interval, then U(a, a)− a < 0
and, since U(l, l) = l, it follows that U(l, a)− l > 0. If L is a singles interval, then
U(a, a)−a > 0 and, since U(l, l) = l, it follows that U(l, a)− l < 0. In either case,
since U is continuous, there exists â ∈ L such that U(â, a) = â. To complete this
step, consider L such that v ∈ L and note that it is a marriage interval. Applying
the argument above we get that either there exists â such that U(â, a) = â, or
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U(â, a) < â for all â ∈ L. In the latter case, v is optimal given a.

Second, we show that, for any acceptance cutoff â ∈ L, such that L is not the
top marriage interval, there exists an opportunity value a ∈ L that “rationalizes”
it. Let L be a marriage/singles interval, and let â ∈ L. If L is a marriage interval,
then, the value w that maximizes U(w, â) satisfies l < w < â, and the value w
that maximizes U(w, l) is w = l > â. By continuity, there exists an a ∈ (â, l)
such that the value w that maximizes U(w, a) is w = â. If L is a singles interval,
then the value w that maximizes U(w, â) satisfies w > â, and the value w that
maximizes U(w, l) is w = l < â. By continuity, there exists an a ∈ (l, â) such
that the value w that maximizes U(w, a) is w = â. That is, in both cases, a
rationalizes the acceptance cutoff â.

Third, we use the insights from the first two steps to cover an arbitrary mar-
riage/singles interval with classes. Let L be a marriage/singles interval that
does not contain v or v, and let c0 ∈ L. For k = 1, 2, ..., let ck be the pizzazz
for which U(ck−1, ck) = ck−1. For n = 1, 2, ..., let cn be the pizzazz for which
U(c−n, c1−n) = c−n. Note that both series {ck}k∈N and {cn}n∈N are bounded and
monotonic, and hence converge to k∗ and l∗, respectively. At each of these limits,
v∗ ∈ {k∗, l∗}, it must hold that v∗ = av∗ = âv∗ . Thus, v∗ ∈ {l, l}. For k ∈ Z,
define Ck = [ck, ck+1). Note that the sets {Ck}k∈Z are disjoint and cover L. Set
âv = ck for any v ∈ [ck, ck+1), âl = l, and âl = l.

Let L be a marriage interval containing v. Set c0 = v. For any n = 1, 2, ...,
let cn be the pizzazz for which U(c−n, c1−n) = c−n. In the case of c−n ≤ v, set
c−n = v and stop the process. Define Cn = [c−n, c−n+1) for n = 1, 2, ... . As in
the previous case, the sets {C−n}n∈N are disjoint and cover L. Set âv = c−n for
any v ∈ [c−n, c1−n) and âv = c−1.

Let L be a marriage interval containing v but not v. Set c0 = v. For any
k = 1, 2, ..., let ck be the pizzazz for which U(ck−1, ck) = ck−1. Define Ck−1 =
[ck−1, ck) for any k = 1, 2.... Set âv = ck−1 for any v ∈ [ck−1, ck).

By observing the implied opportunity values, it is straightforward to verify
that the acceptance cutoffs that we defined form an equilibrium. By construc-
tion, av = v for any v for which v = U(v, v). If v 6= U(v, v), then in any mar-
riage/singles interval L, if âv = ck for some k, then av = ck+1. By construction,
all acceptance cutoffs âv are optimal given their respective opportunity values av.
Thus, an equilibrium exists. The existence of a cutoff η is implied by Proposition
2.

Proof of Proposition 5. Consider a symmetric equilibrium in which both sides
of the market are partially cursed (with the same ψ) and let {Ckp }k be the classes
in its top marriage interval. Similarly, consider a symmetric equilibrium in which
both sides are fully rational and let {Ckr }k be the classes in this equilibrium. Note
that C1

p = C1
r since the top class is not affected by cursedness. Assume that for

k ∈ {1, ..., n− 1}, all men in Ckr accept women in Ckp or higher, and all women in

Ckp accept men in Ckr or higher. Note that if a woman is accepted by all men in
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Cnr or below and rejected by men in higher classes, then her best response is to
accept men in class Cnr and above. Similarly, if a man is accepted by all women
in Cnp or below and rejected by women in higher classes, then his best response
is to accept women in class Cnp and above.

Recall that there is a finite number of classes in {Ckr }k (Proposition 1) and
denote it by N . If v /∈ CNp , then all women whose pizzazz values are below CNp
are not accepted by any men, and, therefore, they set their acceptance cutoff to v.
By construction, the strategies we have defined constitute the unique equilibrium
in this model.

Note that given any opportunity value av, a rational agent chooses a weakly
lower acceptance cutoff than a cursed agent.18 Since agents’ acceptance cutoffs
are increasing in their opportunity value, women’s classes {Ckp }k are “higher”

than men’s classes {Ckr }k. That is, inf(Ckp ) ≥ inf(Ckr ) for all k.

If a women is in the k-th class in the asymmetric model, then she is also in
the k-th class in the partially cursed symmetric equilibrium. However, in the
asymmetric model, women in the partially-cursed-k-th class marry men in the
rational-expectations-k-th class, which is “lower” than the partially-cursed-k-th
class. Thus, a woman in the k-th class in the asymmetric model has weakly lower
acceptance cutoff and opportunity value than in the partially cursed symmetric
model.

Since men’s classes have shifted downwards in the asymmetric model compared
to the partially cursed symmetric equilibrium (i.e., inf(Ckp ) ≥ inf(Ckr ) for all k),
each man now belongs to a weakly higher class. While the classes themselves have
changed, the acceptance cutoff and opportunity values of men who belong to the
k-th class have not, as they are pinned down by the women’s classes. Thus, men’s
acceptance cutoffs and opportunity values are weakly higher in the asymmetric
case.

Note that all men marry in equilibrium of the asymmetric model. As for women,
if in a symmetric partially cursed equilibrium a woman w does not marry in finite
time, then she is not part of the top marriage interval and w < inf(CNp ). Hence,
as our construction shows, she cannot marry in the asymmetric case either. Thus,
the share of women (respectively, men) who never marry is weakly higher (respec-
tively, lower) in the asymmetric case.

Proof of Proposition 6. Consider (6) and observe that U(v, v) is decreasing
in η. Moreover, when η goes to 0, U(v, v) goes to E[w|v ≤ w ≤ pj ] > v for
v ∈ int(Pj). Thus, the share of agents for whom the necessary and sufficient con-
dition for marriage is satisfied becomes smaller when η decreases and it converges
to 0 when η goes to 0.

Proof of Proposition 7. The arguments in this proof follow Proposition 1 in

18The inequality is strict except for the cases of av = v and âv = v.
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Smith (2006) with some necessary adaptation to our setting. Agents’ optimal
acceptance cutoffs, given their perceived continuation values, together with the
inflow distribution of agents, determine the distribution of singles in the market,
and induce a profile of perceived continuation values. This is essentially a mapping
from one profile of continuation values to another. In the proof, an appropriate
set of profiles of continuation values is defined, and it is shown that this mapping
satisfies the conditions for Schauder’s fixed-point theorem. This establishes that
a steady-state equilibrium exists.

Let U be the set of measurable functions U on [v, v] that satisfy 0 ≤ Uv ≤ v
for every v ∈ [v, v] and have a uniformly bounded variation B <∞. These value
functions are integrable, and so, by Alaoglu’s theorem, U is weak-? compact.

Denote by αU (v1, v2) : [v, v]2 → {0, 1} the indicator function that specifies
who marries whom given a profile of perceived continuation values U , that is,
αU (v1, v2) = σUv1(v2) ∗ σUv2(v1), where σU is the agents’ profile of strategies given

U and σUv (w) = 1 if w ≥ Uv. Denote by fα the density function of singles
that satisfies the balanced-flow condition given α. Note that the balanced-flow
condition implies that

0 <
βg

β
δ µ+ δ

≤ f ≤ βg

δ
.

Endow αU and fα with L1 norms: ||α||L1 =
∫ v
v

∫ v
v |α(x, y)|dxdy and ||f ||L1 =∫ v

v |f(x)|dx.

LEMMA 6: Part (i). Any Borel measurable map from value functions in U to
match indicator functions is continuous. Part (ii). The map from match indicator
functions to steady-state density solving (7) is both well defined and continuous.

The lemma is essentially Lemma 8 in Smith (2006). The proof of Lemma 6 is the
same as in Smith (2006) as it does not rely on the perceived continuation values
U being correct. It is therefore omitted.

By Lemma 6, there exists a well-defined continuous mapping from value func-
tions to densities solving the balanced-flow condition. We can therefore write the
steady-state density, distribution, and cursed-belief functions given a profile U as
fU , FU , and γU , respectively. In a steady-state equilibrium, (8) can be rewritten
as

Uv =

∫ v
v γ

U
v (x)max{Uv, x}fU (x)dx

η +
∫ v
v γ

U
v (x)fU (x)dx

,(A3)

where

γUv (x) =
ψ

FU (v)

∫ v

v
σUx (v)fU (x)dx+ (1− ψ)σUx (v).
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Define the operator T on the set U as follows:

T (Uv) :=

∫ v
v γ

U
v (x)max{Uv, x}fU (x)dx

η +
∫ v
v γ

U
v (x)fU (x)dx

.(A4)

Except for adjusting for the different function in (A4), the proofs of the next
two lemmas are identical to the ones in Smith (2006).

LEMMA 7: T (U) ∈ U for every U ∈ U .

Proof. By the definition of T , since U ∈ [0, v] for every U ∈ U , it follows that
T (U) ∈ [0, v]. Moreover, T preserves measurability. It remains to show that the
total variation of T (U) is bounded by B for any U ∈ U . Note that for v2 > v1,

T (Uv2)− T (Uv1) =

∫ v
v γ

U
v2(x)max{Uv2 , x}fU (x)dx

η +
∫ v
v γ

U
v2(x)fU (x)dx

−

∫ v
v γ

U
v1(x)max{Uv1 , x}fU (x)dx

η +
∫ v
v γ

U
v1(x)fU (x)dx

.

Following Smith (2006), we rewrite T (Uv2) − T (Uv1) as Q1(v1, v2) + Q2(v1, v2),
where

Q1(v1, v2) =

∫ v
v γ

U
v1(max{Uv2 , x} −max{Uv1 , x})fU (x)dx

η +
∫ v
v γ

U
v1(x)fU (x)dx

and

Q2(v1, v2) =

∫ v
v γ

U
v2(x)max{Uv2 , x}fU (x)dx

η +
∫ v
v γ

U
v2(x)fU (x)dx

−

∫ v
v γ

U
v1(x)max{Uv2 , x}fU (x)dx

η +
∫ v
v γ

U
v1(x)fU (x)dx

.

Rearranging Q2(v1, v2) yields

∫ v
v (γUv2(x)− γUv1(x))max{Uv2 , x}fU (x)dx ∗ (η +

∫ v
v γ

U
v1(x)fU (x)dx)

(η +
∫ v
v γ

U
v2(x)fU (x)dx)(η +

∫ v
v γ

U
v1(x)fU (x)dx)

−
∫ v
v γ

U
v1max{Uv2 , x}f

U (x)dx ∗ (
∫ v
v (γUv2(x)− γUv1(x))fU (x)dx)

(η +
∫ v
v γ

U
v2(x)fU (x)dx)(η +

∫ v
v γ

U
v1(x)fU (x)dx)

.

Note that
∫ v
v γ

U
v (x)fu(x)dx =

∫ v
v σ

U
x (v)fU (x)dx, fU ≤ (βg)/δ and Uv ≤ v. By
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the triangle inequality,

|Q2(v1, v2)| ≤ Kβ

δ
(G(av2)−G(av1)),(A5)

where

K =
v(η + 2βδ )

η2
.

Let P be the set of partitions of [v, v]. By (A5), for any partition {vj} ∈ P,

n∑
j=1

|Q2(vj−1, vj)| ≤ K
n∑
j=1

β

δ
(G(avj )−G(avj−1)) = K

β

δ
.(A6)

To establish an upper bound for |Q1(v1, v2)|, note that |max{a2, b2}-max{a1, b1}| ≤
|a2 − a1|+ |b2 − b1|, which implies

|Q1(v1, v2)| ≤

∫ v
v γv1(x)|Uv2 − Uv1 |f(x)dx

η +
∫ v
v γv1(x)f(x)dx

≤
β
δ

η + β
δ

|Uv2 − Uv1 |.(A7)

Denote the total variation of a function φ by 〈φ〉. For any partition {vj} ∈ P,

n∑
j=1

|Q1(vj−1, vj)| ≤
β
δ

η + β
δ

〈U〉.(A8)

Hence,

〈T (U)〉 ≤ Kβ

δ
+

β
δ

η + β
δ

〈U〉.(A9)

For a large enough B, 〈U〉 < B implies that 〈T (U)〉 ≤ B. We can conclude that
T (U) ∈ U if U ∈ U .

LEMMA 8: The operator T (U) is continuous.

Proof. Continuity is proved by showing that |
∫
I T (U1

v ) − T (U2
v )dv| is small

whenever |
∫
I U

1
v −U2

v dv| is small for any I ⊆ [v, v] and any U1 and U2. By (A4),
the expressions for T (U1

v ) and T (U2
v ) are different in three aspects: the density

function, cursed-belief function, and value function. By adding and subtracting
a series of expressions that differ in only one of these aspects each time, we can
write T (U1

v )− T (U2
v ) as
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∫ v
v (γU

1

v − γU
2

v )(x)max{U1
v , x}fU

1
(x)dx

η +
∫ v
v γ

U1

v (x)fU1(x)dx
+

∫ v
v γ

U2

v (x)(max{U1
v , x} −max{U2

v , x})fU
1
(x)dx

η +
∫ v
v γ

U1

v (x)fU1(x)dx
+

∫ v
v γ

U2

v (x)max{U2
v , x}(fU

1 − fU2
)(x)dx

η +
∫ v
v γ

U1

v (x)fU1(x)dx
+

(
1

η +
∫ v
v γ

U1

v (x)fU1(x)dx
− 1

η +
∫ v
v γ

U2

v (x)fU2(x)dx

)∫ v

v
γU

2

v (x)max{U2
v , x}fU

2
(x)dx.

Note that

1

η +
∫ v
v γ

U1

v (x)fU1(x)dx
− 1

η +
∫ v
v γ

U2

v (x)fU2(x)dx
=

∫ v
v (γU

2

v − γU
1

v )(x)fU
2
(x)dx+

∫ v
v γ

U1

v (x)(fU
2 − fU1

)(x)dx(
η +

∫ v
v γ

U1

v (x)fU1(x)dx
)(

η +
∫ v
v γ

U2

v (x)fU2(x)dx
) .

When U2 and U1 are close, max{U2
v , x} and max{U1

v , x} are close, and, by

Lemma 6, fU
2

is close to fU
1
. Moreover, by the proof of Lemma 8 in Smith (2006),

part C, if U2 and U1 are sufficiently close, then σU
1

v and σU
2

v are close.19 Therefore,

by definition, γU
1

v and γU
2

v are close as well. Since η, U i, and fU
i

are are uniformly
bounded by some constant C > 0, we can conclude that |

∫
I T (U1

v )− T (U2
v )dv| is

small whenever |
∫
I U

1
v − U2

v dv| is small for any I ⊆ [v, v].

Thus, T satisfies the requirements for Schauder’s fixed-point theorem (see Istrăescu,
1981, Theorem 5.1.3). That is, there exists a U? such that T (U?) = U?.

Proof of Proposition 8. In the first part of the proof, we use the balanced
flow condition together with the requirement that agents’ strategies be optimal
to establish that U?v goes to v when µ goes to infinity.

LEMMA 9: limµ→∞U
?
v = v.

19This is a step in showing that the map from value functions to match indicator functions is contin-
uous.
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Proof. Recall that, in equilibrium, [âv, v] is the top class. The optimality of v’s
strategy implies that

âv ≥
∫ v
âv
f(x)xdx

η +
∫ v
âv
f(x)dx

.(A10)

Rearranging yields

âv
r + δ

µ(F (v)− F (âv))
≥
∫ v
âv
f(x)xdx

F (v)− F (âv)
− âv.(A11)

The balanced-flow condition implies that within a class, the steady-state distri-
bution F is a rescaling of the original distribution G. Thus,∫ v

âv
f(x)xdx

F (v)− F (âv)
=

∫ v
âv
g(x)xdx

G(v)−G(âv)
= EG[w|w > âv].(A12)

Moreover, the balanced-flow condition implies that

(F (v)− F (âv))(δ + µ(F (v)− F (âv))) = β(1−G(âv)).(A13)

It is now possible to see thatG(âv) goes to 1 when µ goes to infinity. Otherwise, by
(A13), µ(F (v)−F (âv)) goes to infinity when µ goes to infinity, which implies that
the LHS of (A11) converges to 0. This, in turn, implies that EG[w|w > âv]− âv
goes to 0, which violates the assumption that G(âv) does not go to 1 when µ goes
to infinity. Hence, âv goes to v, and so U?v goes to v.

Let ε > 0 and v, w ∈ (v, v) such that v + ε < w. If v marries in equilibrium,
then

(A14)

v ≥ U?v ≥
ψF (v)p(av)(1− p(w))

∫ v
w f(x)xdx

F (v)−F (w)

η + ψF (v)p(av)(1− p(w))
>

ψF (v)p(av)(1− p(w))w

η + ψF (v)p(av)(1− p(w))
,

where p(z) = F (z)/F (v). Note that the second inequality above follows from the
fact that the acceptance cutoff âv = w is not necessarily optimal. Observe that if

p(av)(1− p(w))F (v)µ(A15)

goes to infinity when µ goes to infinity, then (A14) is violated for a sufficiently
large µ.

Assume that there are two agents, v1 and v2, who marry in equilibrium such



VOL. VOL NO. ISSUE SEARCHING FOREVER AFTER 35

that v + ε < v1 < v2 < v − ε and v2 > v1 + ε.
As we showed in the above lemma, âv goes to v when µ goes to infinity. Thus, for

a sufficiently large µ, (A11) must hold in equality and, therefore, µ(1−p(âv))F (v)
goes to infinity when µ goes to infinity. Thus, if we set w = âv and v = v2, we
obtain from (A15) that p(av2) goes to 0 when µ goes to infinity. Since v2 marries,
v2 ≤ av2 and, therefore, p(v2) goes to 0 as well.

We now repeat this exercise with v = v1 and w = v2 and show that p(v2) goes
to 1 when µ goes to infinity. By monotonicity, az ≤ av1 for all z < v1. Therefore,
every z < v1 leaves the market at a rate no greater than δ + µF (av1) (recall that
v1 ≤ av1 since v1 marries) and so, the balanced-flow condition implies that

F (v1)[δ + µF (av1)] ≥ βG(v1) >> 0.

By the above balanced-flow condition, µF (av1) must go to infinity when µ goes to
infinity, as otherwise the LHS goes to 0. From (A15), 1− p(v2) must go to zero,
in contradiction to p(v2) going to zero. We can conclude that for a sufficiently
large µ, at most 3ε of the pizzazz values marry.

Market Segmentation

We now show when agents are partially cursed, segmentation can increase the
share of agents who marry in equilibrium.20 Formally, let vn = v < vn−1 < ... <
v1 < v0 = v represent a partition of the market into n cells and assume that men
in the i-th cell meet women in the i-th cell at a flow rate µ(F (vi−1)−F (vi)) and
vice versa. Agents of different cells do not meet each other.

PROPOSITION 9: In the segmented market, the share of agents who marry in
finite time is higher than in the non-segmented market.

Proof. To prove this result, we compare U(v, v) in the original market with
U(v, v) in the segmented market and show that the latter is smaller. Recall that
U(v, v) in the original market is given in (5). First, assume that n = 2 and
partition the market into two segments, an upper segment [v1, v] and a lower
segment [v, v1). Denote the mass of agents in each segment by 1 − m and m,
respectively. Thus,

U seg(v, v) =


ψ

F (v)−m
1−m

(1−F (v))E[w|w>v]

η+ψ
F (v)−m
1−m

(1−F (v))
for v ∈ [v1, v]

ψ
F (v)
m

(m−F (v))E[w|v1>w>v]

η+ψ
F (v)
m

(m−F (v))
for v ∈ [v, v1).

Hence, U seg(v, v) ≤ U(v, v) for every v ∈ [v, v]. That is, our condition for mar-
riage in finite time holds for more agents in the segmented market than in the

20It is possible to obtain the same result in the analogy-based expectation equilibrium framework.
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unsegmented one. We can now partition each of the two segments into subseg-
ments and obtain a similar result: the share of agents who marry in finite time
in each subsegment is greater than in the unsegmented market.


