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Abstract

A loss-averse gambler faces an infinite sequence of identical unfair lotteries and

decides in which of these lotteries to participate, if at all. We establish that it is

always possible to find an unfair baseline lottery such that the gambler chooses

to participate in several such lotteries, and that the gambler’s optimal gambling

plan is a left-skewed stopping rule. We introduce stochastic updates to the gam-

bler’s reference point and show that these updates create dynamic inconsistencies

in the gambler’s behavior. We find that dynamically inconsistent sophisticated

gamblers participate in fewer lotteries than dynamically inconsistent naive ones,

and that dynamically inconsistent naive gamblers may participate in fewer lot-

teries than dynamically consistent ones.
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1 Introduction

Casino gambling has social and economic effects both on communities and on

gamblers at the individual level. In the US, in 2016, the tribal and commercial

casino industries generated a combined total annual gross gaming revenue of more

than 70 billion dollars (American Gaming Association, 2017) and over 81 million

individuals visited a casino. The existence of individuals who pay insurance

premiums to reduce their exposure to risk and at the same time participate in

gambling activities has intrigued economists since Friedman and Savage’s (1948)

seminal work. Prominent explanations for this phenomenon include utility from

gambling (Conlisk, 1993) and probability distortion à la commutative prospect

theory (Barberis, 2012).

Loss aversion is a tendency to evaluate changes or differences rather than

absolute magnitudes and to dislike losses more than comparably sized profits.

Loss aversion is one of the most well-documented phenomena in economics and

psychology. The foundations for reference-dependent preferences were laid by

Markowitz (1952), and loss aversion as we know it nowadays was introduced by

Kahneman and Tversky (1979). Loss-averse economic agents are typically averse

to most risks. For example, a loss-averse agent always rejects a single 50:50 fair

lottery since the pain he would suffer from the potential loss is greater than the

pleasure he would derive from the potential profit.

We examine the behavior of a loss-averse gambler who faces an infinite se-

quence of unfair lotteries, each of which pays 1 with probability p < 0.5 and −1

with probability 1− p. The gambler has to decide whether or not to participate

in each of these lotteries (he can participate in as many lotteries as he wishes).

Observe that since each lottery is unfair and the gambler dislikes losses more

than he likes gains of the same magnitude, participation in a fixed number of

k > 0 lotteries is unattractive to the gambler (i.e., the gambler prefers not par-

ticipating at all to participating in k lotteries). Will the gambler refuse to play in

the above lotteries or will he choose to participate and implement a “more com-

plex” gambling plan? Can a casino that offers such lotteries affect the gambler’s

decision?

Even though the gambler is loss averse and the lotteries are unfair, he may

decide to participate in several lotteries. In such cases, his optimal gambling plan

is a left-skewed stopping rule (i.e., the gambler stops after accumulating profits

of h > 0 or losses of −l, where l > h). We show that for every set of preference

parameters, it is possible to find p < 0.5 such that the gambler will participate in

these lotteries. This implies that a casino that offers such lotteries and controls

p can make a strictly positive profit when it faces loss-averse gamblers.
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In practice, casinos often offer monetary benefits or other perks to incentivize

gamblers to bet. Typically, they incur short-term losses on these offers but gain

the losses back as the gamblers continue gambling. Can a casino that offers the

above lotteries benefit from offering monetary benefits to individual gamblers?

In particular, suppose that the casino can offer a transfer τ > 0, and accepting

this transfer obliges the gambler to participate in one lottery (after the lottery

is realized, the gambler is allowed to stop or continue gambling as much as he

wishes). Can such a transfer make both the gambler and the casino better off?

Observe that such agreements between a risk-neutral casino and a risk-averse

gambler are not viable.1 However, we show that for a wide range of values of p,

such an agreement makes both the casino and a loss-averse gambler better off.

The gambler’s preferences are defined over gains and losses with respect to

a reference point (e.g., the gambler’s wealth at the beginning of the game).

Changes in the reference point may affect the gambler’s preferences and may

result in dynamically inconsistent behavior as the gambler’s decision at a specific

wealth level depends on his reference wealth. We extend our model by allowing

for stochastic updates to the gambler’s reference point : we assume that in every

period, with some probability, the gambler’s reference point is updated to the

gambler’s current wealth level. We interpret such an update as internalizing the

gambler’s profits (or losses) since the last update. The gambler may or may

not be aware of the possibility of future updates. We shall refer to a gambler

who is aware of these updates as sophisticated and to a gambler who is unaware

of these updates as naive. To analyze the effect of these updates we apply a

multi-selves approach (Strotz, 1956). We establish that a sophisticated gambler,

in expectation, participates in fewer lotteries than a naive one. Surprisingly, a

dynamically inconsistent naive gambler may participate in fewer lotteries than

a dynamically consistent gambler (i.e., a gambler whose reference point is never

updated).

The paper proceeds as follows. We present the model in Section 2 and analyze

it in Section 3. In Section 4 we extend the model by allowing for updates to

the gambler’s reference point. Section 5 covers related literature and Section 6

concludes. All proofs are to be found in the Appendix.

1A risk-averse gambler accepts a risky prospect only if its expected value is strictly positive (i.e.,
if, including the transfer τ , the casino’s expected profit is strictly negative).
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2 The Model

A gambler faces an infinite sequence of identical unfair lotteries, each of which

pays 1 with probability p < 0.5 and −1 with probability 1−p. There is a discount

factor δ < 1. At each time t = 1, 2, 3, ..., the gambler decides whether or not

to participate in a lottery. Let at denote the gambler’s decision at time t and

let wt denote his wealth at the beginning of time t. Let rt denote the gambler’s

reference wealth at time t. We assume that r1 = w1 (i.e., the gambler’s initial

reference point is his wealth before he starts gambling). Let xt := wt− rt denote

the gambler’s gains or losses with respect to his reference wealth at the beginning

of time t.

The gambler’s preferences are defined over gains and losses with respect to

his reference wealth. They are represented by

U (x) =

{
u (x) if x ≥ 0

−v (−x) if x < 0

}

where u : R → R and v : R → R are strictly increasing, unbounded, and satisfy

u (0) = v (0) = 0. We assume that u (x) < v (x) for every x > 0, that v(x)
x is

weakly decreasing in x, and that limx→∞
v(x)
x = 0. In words, we assume that the

gambler is loss averse, and that his sensitivity to gains or losses diminishes as

these gains or losses increase.2 These assumptions are satisfied by the following

utility function, proposed by Kahneman and Tversky (1992):

U (x) =

{
xα if x ≥ 0

−λ (−x)β if x < 0

}
(1)

where λ > 1, and 0 < α ≤ β < 1.

Denote the history at time t, (r1, x1, a1, ..., rt−1, xt−1, at−1, rt, xt), by ht. A

strategy a maps the history at time t to a decision whether or not to participate

in a lottery at time t. We shall denote by V (a, x, p, δ) the gambler’s expected

value from following the strategy a when his current gains level is x. A gambling

strategy is said to be stationary if, for every time t, the decision at is conditioned

only on xt. By Theorem 7 in Blackwell (1965), there exists a stationary strategy

that maximizes the gambler’s expected payoff. In the present setting, there exists

a non-randomized stationary strategy that maximizes the gambler’s payoff. To

see this, observe that if the gambler uses a randomized stationary strategy α, then

2We allow for some segments in which u and v are not concave.
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at each gains level x at which he is scheduled to randomize, he obtains a value

of V (x, a, p, δ) = U (x). Conditional on reaching gains level x, the gambler can

obtain U (x) by stopping immediately. Thus, by switching the gambler’s decision

in every node in which he is scheduled to randomize, we can obtain a pure strategy

that guarantees the gambler the same payoff as the one he attains under3 α. We

shall restrict our attention to non-randomized stationary strategies.

3 Optimal Gambling

In this section, we characterize the gambler’s behavior. Lemma 1 establishes

that a strategy is optimal only if it is a stopping rule. That is, the gambler

plays until either he accumulates gains of h ≥ 0 or losses of −l ≤ 0. When

h = l = 0, it means that the gambler does not gamble. We shall refer to such a

strategy/stopping rule as a degenerate one.

Lemma 1 An optimal strategy must induce a stopping rule: the gambler stops

participating in lotteries whenever his gains level reaches h ≥ 0 or −l ≤ 0.

We shall now use the technical result of Lemma 1 in order to examine the

gambler’s optimal gambling strategy further. We refer to a stopping rule under

which the gambler stops after accumulating gains of h > 0 or after accumulating

losses of −l < 0 as a left-skewed one if l > h. The next result establishes that

the gambler’s optimal stopping rule4 is either degenerate or left-skewed.

Proposition 1 The optimal gambling strategy is either degenerate or a left-

skewed stopping rule.

Left-skewed stopping rules are attractive to the gambler since they provide

him with more opportunities to break even after accumulating some losses. He

values these opportunities since he is risk-seeking in (some parts of) the losses

segment of his utility function.

A natural question that arises is whether the gambler starts gambling at all.

The next result establishes that for large values of p < 0.5, the optimal gambling

plan is not degenerate.

Proposition 2 There exist p? < 0.5 and δ? < 1 such that if both p ∈ (p?, 0.5)

and δ ∈ (δ?, 1), then the gambler’s optimal strategy is a non-degenerate left-

skewed stopping rule (i.e., the gambler participates in several lotteries).

3This is not a general observation. For example, Henderson et al. (2017) show that a gambler who
distorts probabilities may obtain a strictly higher payoff by means of a randomized strategy.

4Generically, the gambler’s optimal strategy is unique as small changes in p break his indifference
between different stopping rules. When the gambler is indifferent between several stopping rules, each
of them is either degenerate or left-skewed.
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Proposition 2 establishes that facing a sufficiently large p < 0.5, the gambler

will gamble. Note that since the gambler is loss averse, he does not want to

participate in any fixed number of k lotteries (as even for p = 0.5 such a strategy

induces a combination of 50:50 fair lotteries, which are unattractive from a loss-

averse gambler’s perspective; see (6) in the proof of Lemma 1). However, this

does not imply that the gambler is risk averse. His diminishing sensitivity to

losses makes him risk-seeking in some parts of the losses segment of his utility

function. Left-skewed stopping rules allow the gambler to enjoy more gambling

at gains levels at which he is risk-seeking while not gambling so much at gains

levels at which he is risk averse.

A natural question to ask is how large must p be for the gambler to participate.

This, of course, depends on the gambler’s preferences. For example, consider the

preferences represented by (1). The larger λ and β are, the larger the cutoff p

is. Set λ = 1.1, α = β = 0.87, and consider the δ = 1 limit. Observe that since

the gambler is dynamically consistent, his optimal stopping rule must maximize

his expected value when x = 0. The problem is an immediate application of the

“gambler’s ruin” problem (for a textbook treatment, see, Grinstead and Snell,

1997). Thus, we need to choose h and l that maximize:

limδ→1V (a?, 0, p, δ) =
1−

(
1−p
p

)l
1−

(
1−p
p

)l+hhα − λ 1−
(

p
1−p

)h
1−

(
p

1−p

)l+hhβ (2)

If p = 0.49, then the optimal gambling plan is to stop after accumulating gains of

h = 1 or after accumulating losses of −l = −7. This strategy induces a winning

probability of 0.857 (i.e., the probability of finishing the game with x > 0 is

0.857) and a strictly positive expected value for the gambler. Given this strategy

and these parameters, a casino that offers such lotteries makes an expected profit

of 0.146 (i.e., the gambler’s expected loss is 0.146).

Example: Gambling Inducements

Our results in the previous section established that a casino that offers the above

lotteries and can control the baseline lottery’s probability p, is able to make

a positive expected profit at the expense of loss-averse gamblers. In practice,

however, it is not always possible to fully adjust p as gambling games are often

canonic games (e.g., Blackjack) with given probabilities and gamblers may be

unwilling to play new games whose rules they are unfamiliar with (e.g., they

might not understand the rules of these games). What can a casino do when it
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cannot control p?

We shall now demonstrate that a casino that offers the above lotteries can

benefit from providing compensation to gamblers who start gambling. Consider

the following interaction between a risk-neutral casino and our loss-averse gam-

bler. The casino commits to a potential monetary transfer τ to the gambler. The

transfer is conditioned on gambling in at least one lottery (say, at time t = 1).

If the gambler participates in that lottery, then he receives τ (after participating

in one lottery, he is allowed to participate in as many lotteries as he wishes).

We interpret the compensation τ as benefits available to gamblers who enter the

casino.

Initially, it is unclear whether or not a casino can benefit from such an offer.

For example, a casino would never pay to incentivize a risk-averse gambler to

enter the casino. This is because a risk-averse gambler would stop gambling after

the first lottery and a compensation greater than 1−2p (i.e., the casino’s expected

profit) would be required to make him start gambling, as risk-averse economic

agents find prospects with negative expected values unattractive. We will show

that if p is not too large5 or too small, the casino can benefit from offering a

transfer τ > 0 to gamblers who start betting (i.e., in return for participating in

at least one lottery).

Consider the δ = 1 limit and the preferences represented by (1). Suppose

that p = 18
37 as in the Red or Black roulette game, and let α = β = 0.8 and

λ = 1.2. If the gambler stops gambling after accumulating gains of h or losses of

l, then limδ→1V (a, 0, δ, p) < 0 as there exist no two integers h and l such that

1−
(
1−p
p

)l
1−

(
1−p
p

)h+lh0.8 − 1.2
1−

(
p

1−p

)h
1−

(
p

1−p

)h+l l0.8 ≥ 0 (3)

It follows that the gambler’s optimal stopping rule is degenerate (i.e., h = l = 0).

Hence, the casino’s expected profit is 0 if it does not incentivize the gambler to

start betting. We now illustrate how both parties can benefit when the casino

makes a transfer τ? = 0.01 to the gambler, who, in return, starts gambling.

Given a transfer of τ? = 0.01, the following strategy a? induces a strictly

positive expected value for the gambler at his reference wealth6: stop once you

5By Proposition 2, for values of p sufficiently close to 0.5, the gambler will participate regardless
of whether or not he is offered compensation in return. A casino has no reason to compensate the
gambler in such a case.

6For completeness, the gambler’s expected payoff V (a?, 0, p, δ) is at least
1−( 1−p

p )
8

1−( 1−p
p )

9 1.010.8 −

1.2
1−( p

1−p )
1−( p

1−p )
9 7.990.8 > 0 in this case.
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accumulate gains of x = 1.01 or losses of −7.99. Observe that the gains and

losses include the transfer τ?. Since the gambler can make a positive expected

payoff (the above strategy need not be optimal), he will accept the casino’s in-

ducement τ? and start gambling. From the casino’s perspective, the inducement

is profitable as even if the gambler plays only once, the casino’s expected profit

is strictly positive (note that the expected value of each lottery for the casino is

0.027 > τ?).

In the interaction that is described above, the gambler is allowed to continue

gambling after the first lottery. If instead the gambler commits to participate in

exactly one lottery, then he does not find the transfer beneficial. In fact, there

exists no transfer τ ′ such that both the gambler is willing to accept τ ′ in return

for his participation in exactly one lottery, and the casino is willing to pay τ ′ for

the gambler’s participation. Such a transfer is beneficial for the casino only if

τ ′ ≤ 1− 2p. The gambler accepts such a transfer only if

p
(
1 + τ ′

)α − (1− p)λ
(
1− τ ′

)β ≥ 0 (4)

The LHS of (4) is smaller than the LHS of (5) if τ ′ ≤ 1− 2p.

p (2− 2p)α − (1− p)λ (2p)α ≥ 0 (5)

But (5) cannot hold for p < 0.5. Hence, any transfer that incentivizes the gambler

to participate will not be offered by the casino.

The reason that the gambler’s ability to continue gambling (after partici-

pating in the first lottery) made τ? beneficial to both parties is related to the

“break-even” effect. The gambler’s diminishing sensitivity to losses means that

he values the ability to break even in case he loses in the first lottery (i.e.,

V (a?,−1, p, δ) > U (−1)). Thus, the ability to break even lowers the neces-

sary compensation that is required to make the gambler play. Moreover, the

break-even effect increases the casino’s willingness to pay for participation as it

increases the expected number of unfair lotteries that the gambler participates in

(e.g., if the gambler loses the first lottery, then he will play again in an attempt

to break even).

4 Dynamic Inconsistency

Our analysis in the previous sections assumed that the gambler is dynamically

consistent (i.e., his reference wealth does not change over time). In this section,

we shall consider the possibility that, occasionally, the gambler internalizes his
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profits and updates his reference wealth accordingly. We capture this idea by

assuming that, in each period t, there is a probability π that the reference point is

exogenously updated to the gambler’s current wealth.7 Thus, the update affects

xt = wt − rt and, potentially, the gambler’s behavior.

Let us clarify the timeline within a period. The gambler starts period t with

wealth wt and reference point rt−1. With probability π (respectively, 1− π), he

updates his reference point to rt = wt (respectively, rt = rt−1). He then chooses

whether or not to participate in a lottery. After the lottery is realized, wt is

updated to wt+1. We assume that once wt+1 is realized, if the gambler does not

want to participate in additional lotteries, then he leaves the casino (i.e., ends

the game) and does not wait for the next update to his reference point.8

In order to analyze the effects of the changes in the gambler’s reference wealth

on his behavior, we apply a multi-selves approach (Strotz, 1956) and model

the interaction as a game played among different selves. Each reference wealth

update induces a new self that makes the decisions (whether to stop or continue

gambling) on behalf of the gambler until the next update. Each self cares about

the gains with respect to his own reference wealth (i.e., the gambler’s wealth at

the time that self started to play). Observe that different selves may have the

same wealth but a different reference wealth and, therefore, different gains with

respect to their reference wealth. This may lead to dynamically inconsistent

behavior as the selves’ preferences and decisions depend on their gains rather

than on their absolute wealth.

We split the analysis into two parts as we consider both the case of a gambler

who is unaware of the possibility that his reference point will be updated, and

the case of a gambler who is aware of these changes. We shall refer to the former

type of gambler as a naive gambler and to the latter type as a sophisticated one.

In the case of a naive gambler, each self plays the game as if he were the last self

who will be called to play. That is, each self’s optimal behavior is identical to

the dynamically consistent (i.e., π = 0) gambler’s optimal behavior. The sophis-

ticated gambler’s behavior is not so straightforward as each of the sophisticated

gambler’s “selves” plays the game taking into account his successors’ behavior.9

Our main objective in this section is to compare the expected number of

lotteries played by naive dynamically inconsistent gamblers with the expected

number of lotteries played by sophisticated dynamically inconsistent gamblers.

7The idea of unpredicted changes to the reference point appears in a slightly different context in
Barkan and Busemeyer (2003).

8If the gambler does not leave the casino, his reference point will eventually be updated to his
current wealth and he may continue gambling.

9We do not restrict the sophisticated gambler to using stationary strategies as, in the present case,
this restriction entails loss of generality.
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The next result compares the dynamically consistent gambler’s gambling plan

with the dynamically inconsistent sophisticated gambler’s selves’ gambling plans

(recall that the naive gambler, being unaware of his self-control problem, plans

to play exactly like the dynamically consistent gambler). In the next result we

focus on the generic case in which the dynamically consistent gambler’s strategy

is unique.10 The result establishes that each of the sophisticated gambler’s selves

stops gambling before the dynamically consistent gambler does.

Proposition 3 Fix arbitrary p < 0.5, π > 0, and δ < 1 such that the dynam-

ically consistent gambler’s optimal strategy is unique: he stops gambling after

accumulating gains of h ≥ 0 or losses of −l ≤ 0. Fix a subgame perfect Nash

equilibrium of the multi-selves game and a sophisticated gambler’s self j. If self

j reaches gains levels of −l or h, then he stops gambling and leaves the casino.

Each of the sophisticated gambler’s selves is aware of possibility that the ref-

erence wealth will be updated and a “new self” will be called to play. Effectively,

this is a constraint on a self’s ability to implement his preferred gambling plan

as new selves may not stop gambling in instances in which “preceding selves”

would want them to do so. This constraint incentivizes the sophisticated gambler

to leave the casino before the dynamically consistent gambler does in order to

prevent future selves from over-gambling. Leaving the casino serves as a “com-

mitment device” in such cases.

We now illustrate another reason for the sophisticated gambler to leave the

casino: the inability to break even. When the reference-wealth updates are

frequent (e.g., when π is relatively close to 1) and succeeding selves do not

gamble, a self is unlikely to receive an opportunity to break even if he loses in

the first lottery. In such a case, the self that is playing prefers to leave the casino

as participation in one lottery is never attractive to a loss-averse economic agent

(since u (x) < v (x)).

The naive gambler’s behavior is different. Each of his selves erroneously

believes that the reference wealth will not be updated in the future and, therefore,

plans to play exactly as the dynamically consistent gambler does (i.e., to use a

left-skewed stopping rule). However, the naive gambler has self-control problems

that may prevent him from implementing his preferred plan of action. Unlike

the sophisticated gambler, he is unaware of these problems and, therefore, does

not design his original plan to mitigate these problems.

The next result is a corollary of Proposition 3 (again, we focus on the generic

case in which the dynamically consistent gambler’s optimal strategy is unique).

10Observe that small changes in p break the gambler’s indifference in instances in which he is
indifferent between different gambling plans.
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Proposition 4 compares the expected number of lotteries in which naive and

sophisticated gamblers participate. It establishes that, in expectation, sophisti-

cated gamblers participate in fewer lotteries than naive ones.

Proposition 4 Fix p and δ such that the dynamically consistent gambler’s op-

timal strategy is unique. For every π > 0, the expected number of lotteries in

which the naive gambler participates is weakly smaller than the expected number

of lotteries in which the sophisticated gambler participates.

The intuition for this result is as follows. Leaving the casino is a commitment

device as it guarantees that future selves will not be able to gamble. However,

there is a cost to this commitment: leaving the casino too early prevents the gam-

bler from implementing his preferred gambling plan. The sophisticated gambler,

who predicts his “self-control” problem, leaves the casino earlier than the naive

one who does not think that he needs such a commitment as he erroneously

believes that his preferences are dynamically consistent.

We shall now compare the expected number of lotteries in which dynami-

cally consistent gamblers participate with the expected number of lotteries in

which dynamically inconsistent gamblers participate. Unlike in the previous

comparison (i.e., sophisticated vs. naive), there is no clear-cut answer. The fact

that dynamically inconsistent players may play more than dynamically consis-

tent players is quite standard (see, e.g., Ebert and Strack, 2015). However, in our

model, dynamically consistent players may participate, in expectation, in fewer

lotteries than dynamically inconsistent naive players. We illustrate this effect in

the next example. Observe that, by Proposition 4, in such cases, in expectation,

the sophisticated dynamically inconsistent gambler plays in fewer lotteries than

the dynamically consistent one as well.

Example: Under-gambling by naive gamblers

Consider the preferences given in (1), set λ = 1.1, α = β = 0.87, p = 0.49, π = 1,

and consider the δ = 1 limit. The optimal stopping rule a for a dynamically

consistent gambler must maximize limδ→1V (0, a, p, δ)=

1−
(
1−p
p

)l
1−

(
1−p
p

)h+lh0.87 − 1.1
1−

(
p

1−p

)h
1−

(
p

1−p

)h+l l0.87
It is possible to show that the optimal stopping rule is to stop after accumulating

gains of h = 1 or losses of −l = −7 with respect to the gambler’s reference wealth.
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In expectation, the number of lotteries in which the gambler participates is (the

calculation is a simple application of the well-known gambler’s ruin problem)

l

1− 2p
− l + h

1− 2p

(
1−p
p

)l
− 1(

1−p
p

)l+h
− 1

= 7.27

Since the naive gambler believes that his reference point will never be up-

dated, he tries to implement the dynamically consistent gambler’s optimal plan

(i.e., stopping after accumulating gains of x = 1 or losses of x = −7). In each pe-

riod, the naive gambler internalizes his profit (i.e., his reference wealth becomes

his present wealth). Therefore, he stops gambling after the first lottery in which

he wins (he then reaches gains of x = 1 relative to his reference wealth). Hence,

the expected number of lotteries he participates in is
∑∞

z=1 p (1− p)z−1 z = 2.04.

In expectation, the naive gambler participates in fewer lotteries then the

dynamically consistent gambler. The reason for this effect is that the “upper

bound” of the gambler’s strategy is at x = 1. Thus, whenever the reference

point is updated, the gambler goes back to the starting point (i.e., x=0) and gets

closer to hitting that bound and stopping. Observe that if the naive gambler’s

optimal strategy were to stop after accumulating gains of x > 1, then he would

never stop gambling as he would never accumulate such gains with respect to his

constantly changing reference wealth.

5 Related Literature

Loss aversion is one of the most established departures from classic expected

utility theory. It was introduced by Kahneman and Tversky (1979) and was

applied to explain well-documented phenomena such as the endowment effect

(Thaler, 1980), the equity premium puzzle (Benartzi and Thaler, 1995), and low

price variance among differentiated products (Heidhues and Kőszegi, 2008).11

Barberis (2012) identified that probability distortion à la cumulative prospect

theory (Kahneman and Tversky, 1992) creates a taste for right-skewed lotteries.

He showed that it is possible to generate such a skewed lottery from a finite se-

quence of 50:50 binary lotteries and that probability distortion leads to dynamic

inconsistency when a gambler faces a sequence of such lotteries. The inconsis-

tency follows from the fact that, initially, the gambler puts different weights on

different final outcomes (e.g., he puts a relatively high weight on highly unlikely

11Other prominent applications of loss aversion (in different contexts) appear in Herweg and Schmidt
(2014), Karle and Peitz (2014), Carbajal and Ely (2016), and Rosato (2016).
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events such as large profits). As time progresses, the likelihood of different events

changes and so do the relative weights that the gambler assigns to these events.

Barberis’s (2012) dynamic inconsistency is the point of departure of Ebert

and Strack (2015, 2016) whose results are related to the analysis in Section 4 of

the present paper. Ebert and Strack (2015) study a slightly different setting from

Barberis’s and obtain a surprising result: under mild assumptions on the prob-

ability distortion, a naive12 gambler never stops gambling.13 Ebert and Strack

(2016) study the behavior of a sophisticated player and obtain another striking

result: the only strategy that a sophisticated gambler can execute is to never

gamble. The gambler in Ebert and Strack (2016) underweights highly likely

events and this prevents him from executing any strategy that involves gam-

bling until he accumulates profits of h > 0. Such strategies are non-executable

since once the gambler starts winning, h becomes more likely and, therefore,

underweighted so that the gambler prefers to stop immediately.

6 Concluding remarks

This paper presented a model in which a loss-averse player decides when to stop

an infinite sequence of unfair lotteries. We showed that the optimal gambling plan

for a loss-averse player is a left-skewed stopping rule (i.e., a rule that guarantees

a small prize with a relatively high winning probability), and that it is always

possible to find a sequence of unfair lotteries that a loss-averse player would be

willing to participate in.

We established that stochastic updates to the reference wealth lead to dynam-

ically inconsistent gambling behavior. Since the player’s preferences are defined

over gains and losses with respect to his reference wealth, any change in his ref-

erence point affects his behavior. Knowing that they will gamble too much in

the future, sophisticated players, who are aware of this “self-control” problem,

try to mitigate it by planning to leave the casino earlier than dynamically consis-

tent players and earlier than naive players, who are unaware of their self-control

problem.

Left-skewed stopping rules often induce left-skewed lotteries (for p < 0.5,

a left-skewed stopping rule may induce a right-skewed lottery). This finding

allows us to distinguish between the two main components of prospect theory:

loss aversion and probability distortion. While it is known that overweighting of

12In these papers, a gambler is said to be naive (respectively, sophisticated) if he is unaware (re-
spectively, aware) of his dynamic inconsistency.

13Henderson et al. (2017) show that this is no longer the unique prediction when the gambler is
allowed to use randomized strategies.
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unlikely events and underweighting of highly likely events imply preferences for

right-skewed lotteries, loss aversion implies a taste for left-skewed lotteries.
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Appendix

Proof of Lemma 1

First, assume by negation that never stopping (denoted by a′) is an optimal strat-

egy for the gambler. This implies that V (a′, x, p, δ) ≥ U (x) for every gains level

x. Fixing a′, increasing p would only increase the gambler’s value. Therefore,

V (a′, x, 0.5, δ) ≥ U (x) for every x. Hence, V (a′, 0, 0.5, δ) ≥ 0. However,

V
(
a′, 0, 0.5, δ

)
= (1− δ) [

(
1

2
u (1)− 1

2
v (1)

)
+

1

2
δ

(
1

2
u (2)− 1

2
v (2)

)
+ (6)

1

4
δ2
(

1

2
u (3)− 1

2
v (3)

)
+

3

4
δ2
(

1

2
u (1)− 1

2
v (1)

)
+ ...]

Since V (a′, 0, 0.5, δ) is a combination of “50-50” fair lotteries and the gambler

is loss averse (i.e., u (x) < v (x)), it follows that V (a′, 0, 0.5, δ) < 0. This is in

contradiction to a′ being optimal.

Second, assume that the gambler stops gambling once he accumulates gains

of h > 0 and only then. Denote this strategy by ah and assume that it is optimal.
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Since the gambler is free to stop gambling whenever he wishes, if ah is optimal,

the value V
(
ah, x, p, δ

)
is weakly increasing in δ. Therefore,

limδ→1V
(
ah, 0, p, δ

)
≥ V

(
ah, 0, p, δ′

)
≥ U (0) = 0

for every δ′ < 1. At the δ = 1 limit, the gambler’s problem is an applica-

tion of the well-known “gambler’s ruin” problem (for a textbook treatment, see,

e.g., Grinstead and Snell, 1997). If p < 0.5, with a strictly positive probability

1 −
(

p
1−p

)h
the gambler becomes infinitely poor, and since v (x) is unbounded,

Limδ→1V (a′, 0, p, δ) < 0. Therefore, it is not optimal to gamble at x = 0, which

is in contradiction to the optimality of ah.

Finally, assume by way of negation that stopping after accumulating losses of

−l and only then is optimal for the gambler. Denote this strategy by al. Again,

consider the δ = 1 limit and note that

limδ→1V
(
al, 0, p, δ

)
≥ V

(
al, 0, p, δ′

)
≥ U (0) = 0

for every δ′ < 1. Since p < 0.5, at the δ = 1 limit, with probability 1, the gambler

is “ruined” at the end of the game under al. That is, limδ→1V
(
al, 0, p, δ

)
=

U (−l) < 0 = U (0). This is in contradiction to the optimality of the gambler’s

strategy al.

In conclusion, if a is optimal, then there must be a gains level h ≥ 0 and a

losses level −l ≤ 0 such that, under a, the gambler stops once he accumulates

gains of h or losses of −l.

Proof of Proposition 1

By Lemma 1, we can focus on stopping rules. We shall prove Proposition 1

by showing that right-skewed stopping rules and symmetric stopping rules (i.e.,

stopping after accumulating gains of h or losses of −l, where h ≥ l > 0) cannot

be optimal. Assume by negation that the gambler stops after he accumulates

gains of h or losses of −l. We will show that if h ≥ l > 0, then the gambler

would rather stop gambling once he reaches his reference wealth (i.e., he would

prefer not to gamble at all).

Denote an optimal stopping rule by a? and recall that V (a?, 0, p, δ) ≥ 0. In-

creasing p and δ would only increase V (a?, 0, p, δ). Therefore, limδ→1V (a?, 0, 0.5, δ) ≥
0. The latter expression is given in the LHS of (7):

l ∗ u (h)

h+ l
− h ∗ v (l)

h+ l
≥ 0 (7)
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Rearranging,

u (h)

h
≥ v (l)

l
(8)

By loss aversion, inequality (8) cannot hold for h = l > 0 as v(l)
l > u(l)

l . Since
v(x)
x is weakly decreasing in x and u (x) < v (x) for all x, inequality (8) cannot

hold for 0 < l < h.

Proof of Proposition 2

Since the gambler is dynamically consistent, it is sufficient to show that there

exists a strategy a? such that lim(p,δ)→(0.5,1)V (a?, 0, p, δ) > U (0). Let a? be a

stopping rule under which the gambler stops after accumulating gains of h > 0

or losses of −l < 0. This condition is given by

lim(p,δ)→(0.5,1)V (a?, 0, p, δ) =
l ∗ u (h)

h+ l
− h ∗ v (l)

h+ l
> 0 (9)

It is possible to rearrange (9) and to obtain u(h)
h > v(l)

l . Since limx→∞
v(x)
x = 0,

it is always possible to find l and h < l such that (9) holds and the gambler

prefers stopping at gains of h and losses of l to never playing.

Proof of Proposition 3

In order to prove this result, we shall show that if the dynamically consistent

gambler stops gambling at gains (or losses) of x, then self j must stop gambling

at that gains level as well. Denote the dynamically consistent gambler’s optimal

strategy by a?. If the dynamically consistent gambler stops gambling at gains (or

losses) of x according to a?, then V (a?, x, p, δ) = U (x). By the assumption that

the dynamically consistent gambler’s optimal strategy is unique, if the strategy

a′ includes gambling at gains of x, then V (a′, x, p, δ) < V (a?, x, p, δ) = U (x).

Consider an arbitrary self j and fix an arbitrary profile (ak)k 6=j of strategies

played by the other selves. Consider a gains level x and assume that, given some

history, self j does not leave the game upon reaching gains level x. In a subgame

perfect Nash equilibrium, self j’s strategy is a best response to (ak)k 6=j . Hence,

since he can always leave the casino with gains of x, self j expects to obtain

a utility of at least U (x) conditional on reaching x. Since the dynamically

consistent gambler can imitate the behavior of self j’s successors, it must be that

V (a′, x, p, δ) ≥ U (x) for some strategy α′ in which the dynamically consistent

gambler gambles at gains level x. This leads to a contradiction as V (a′, x, p, δ) <
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V (a?, x, p, δ) = U (x) for every strategy a′ 6= a? that includes gambling at gains

of x.

Proof of Proposition 4

Since each of the naive gambler’s selves believes that he is the last self to play,

their behavior is identical to the dynamically consistent gambler’s behavior. By

Proposition 3, at any gains level at which a naive gambler’s self stops gambling

and leaves the casino, a sophisticated gambler’s self leaves the casino as well.
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