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Abstract

Motivated by the growing discussion on the resemblance of multilevel marketing

schemes to pyramid scams, we compare the two phenomena based on their under-

lying compensation structures. We show that a company can design a pyramid

scam to exploit a network of agents with coarse beliefs and that this requires a re-

ward scheme that charges an entry fee and compensates each participant based

on the number of people that he recruits and that these recruits recruit. By

contrast, when the demand for a company’s product is high, optimal multilevel

marketing schemes neither charge entry fees nor pay directly for recruitment.

What delineates pyramid scams from legitimate multilevel marketing enterprises? Re-

cent growth1 in the multilevel marketing (MLM) industry—which over the past five

years has engaged over 20 million2 Americans—has raised the urgency of this question

for consumer protection agencies. MLM companies such as Avon, Amway, Herbal-

ife, and Tupperware use independent representatives to sell their products to friends

and acquaintances. They all promote the opportunity of starting one’s own business

and making extra income; however, some (e.g., Bort, 2016) view these companies as

pyramid scams whose main purpose is to take advantage of vulnerable individuals.
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Arthi, Benjamin Bachi, Kfir Eliaz, Erik Eyster, Michael D. Grubb, Paul Heidhues, Philippe Jehiel,
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Rubinstein for useful comments and suggestions. I also thank seminar and conference audiences at
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ESSM 2017, ESWC 2020, Frankfurt Behavioral IO Workshop, Israeli IO Day, Essex, IDC Herzliya,
Hebrew University, LSE, Manchester, Royal Holloway, Technion, Tel Aviv, Toulouse, UCL, Warwick,
and Zurich. I acknowledge financial support from the Henry Crown Institute of Business Research in
Israel.
†Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel. E-mail: yair.an@gmail.com
1Membership in MLMs is substantial and growing. For example, the global force of independent

distributors reached nearly 117 million in 2017 (World Federation of Direct Selling Associations, 2018).
2According to the Direct Selling Association’s (DSA) annual report (DSA, 2016).
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The MLM industry’s questionable legitimacy received considerable media atten-

tion3 following a recent FTC investigation against Herbalife (FTC, 2016a). Identifying

whether a particular company is a legitimate one, or whether it is an exploitative pyra-

mid scam that promotes useless products and services in order to disguise itself as a

legitimate firm, can be a daunting task. One obstacle is that MLM companies typi-

cally sell products whose quality is difficult to assess, such as vitamins and nutritional

supplements. The common wisdom among practitioners is that a company is legiti-

mate if the distributors are encouraged to sell the product, and it is an illegal pyramid

scam if it prioritizes recruitment over selling (FTC, 2016b; SEC, 2013). However, it is

extremely difficult to determine the company’s true “selling point” and, in practice, it

is challenging to distinguish between sales to members and sales to the general public.

The objective of this paper is to draw the boundary between the two phenomena on

the basis of their underlying compensation schemes. Our premise is that the potential

distributors are strategic, and that the MLM company chooses a compensation scheme

while taking these prospective distributors’ incentives into account. To understand the

structure of potential reward schemes, consider the following example.

Example 1 The reward scheme R pays every distributor a commission of b1 for every

sale that he makes and a commission of a1 for every agent he recruits to the sales force.

The reward scheme R′ pays every distributor a commission of b′1 for every sale he makes

and a commission of b′2 for every sale made by one of his recruits. It also pays every

distributor a′1 for every person he recruits and a′2 for every one of his recruits’ recruits.

Both schemes charge a license fee4 of φ ≥ 0 from every distributor. We refer to a1, a
′
1,

and a′2 as recruitment commissions, and to reward schemes such as R (respectively, R′)

as 1-level (respectively, multilevel) schemes as they compensate the distributors based

on the first level (respectively, multiple levels) of their downline.

Both R and R′ compensate the distributors for recruiting others to work for the com-

pany. In practice, however, over 90% of the network marketing industry uses multilevel

schemes such as R′ (DSA, 2014). Moreover, although there is no obvious reason why

1-level schemes cannot be used for the purpose of sustaining a pyramid scam, various

companies that were deemed5 pyramid scams used multilevel reward schemes. What

3See, e.g., McCrum (2016), McKown (2017), Multi-level Marketing in America (2015), Moyer
(2018), Parloff (2016), Pierson (2017), Suddath (2018), Truswell (2018), and Wieczner (2017).

4In practice, fees are often presented as training costs or a requirement to purchase initial stock.
5See, e.g., FTC v. Fortune Hi-Tech Marketing Inc. (2013) for a pyramid scam that used a multilevel

reward scheme to enrol over 100,000 distributors in the United States and Canada.
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can explain these stylized facts? Can a “legitimate” company benefit from charging

license fees, paying recruitment commissions, or offering multiple routes through which

individuals can join the sales force? Does the answer depend on whether the company

promotes genuine goods or just the opportunity to recruit others to the sales force?

To address the above questions, we develop a model in which a scheme organizer

(SO) sells a good to a network of agents that is formed randomly and sequentially.

The agents buy only from people to whom they are directly connected. The SO uses a

reward scheme to incentivize agents to sell the good and recruit others (sell distribution

licenses) in order to reach new pools of customers, that is, agents with whom he has no

direct link. A key feature of the model is that each agent’s likelihood of meeting new

entrants (i.e., potential buyers and distributors) decreases as time progresses, which

makes it unattractive to join the sales force late in the game.

To capture the idea that the main product that is being traded in a pyramid scam

is the right to recruit others to the pyramid, assume for a moment that the good has no

intrinsic value such that the only “products” being traded in the model are distribution

licenses. If there exists a reward scheme such that the SO makes a strictly positive

profit in its induced game, then we have a pyramid scam. Classic no-trade theorems

rule out such scams for rational agents in our model, reflecting the fact that such agents

cannot be fooled.6 Hence, to better understand such scams and their underlying reward

schemes, we depart from the rational expectations paradigm.

In the main part of the paper, we use the analogy-based expectation equilibrium

(ABEE) framework (Jehiel, 2005) to relax the requirement that agents have a perfect

perception of the other agents’ behavior. Under the behavioral model, agents neglect

the fact that other agents’ strategies are time-contingent. As a result, they under-

appreciate the extent to which recruiting new members becomes more difficult over

time. Despite this mistake, each agent’s beliefs are statistically correct and can be

interpreted as resulting from the use of a simplified model of the other agents’ behavior.

We establish that if there are sufficiently many agents, then the SO can sustain a

pyramid scam; that is, there are reward schemes that enable the SO to make a strictly

positive expected profit in an ABEE even if the good has no intrinsic value. After

establishing the existence of such schemes, we study their structure and show that they

(i) charge a license fee and (ii) pay for at least two levels of recruitment. In other words,

there exists no 1-level scheme such that the SO makes a strictly positive expected payoff

6While under the classic rational expectations paradigm agents cannot be scammed, in practice, we
observe countless pyramid scams (see, e.g., Keep and Vander Nat, 2014, and the references therein).
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in its induced game when the only products being traded are distribution licenses.

While the intuition for the existence result is similar to the intuition in previous

environments in which ABEE has been used to explain speculation—e.g., the centipede

game (Jehiel, 2005) or the capped bubble game (Moinas and Pouget, 2013)—the intu-

ition for the impossibility result is new. As in previously studied environments, ABEEs

have a threshold feature: agents buy licenses up to some time t and then stop. We show

that, conditional on buying a license at time t, an agent whose beliefs are statistically

correct (as in an ABEE) cannot expect to sell more than one license. Thus, no com-

mission on the agent’s own sales (of licenses) would cover the license fee and make it

beneficial for him to participate. Note that, in addition to overestimating the number

of direct recruits, our agent also overestimates the number of agents his recruits will

recruit. When the SO uses a multilevel scheme, these mistakes accumulate, and so the

agent may find it worthwhile to purchase a license.

We further investigate the features of cognitive biases that help sustain fraudulent

scams by incorporating into the framework several behavioral models in which agents’

beliefs are not necessarily statistically correct. In all of these models, multiple levels

of recruitment commissions can facilitate scams. For example, in Section 6, we adapt

Brunnermeier and Parker’s (2005) model of self-deception to the framework. We find

that even when agents deceive themselves into holding extremely overoptimistic beliefs

about their location in the game tree (e.g., that they are likely to be “at the top of

the pyramid”) and, as a result, it is possible for the SO to sustain a pyramid scam by

means of a 1-level scheme, the scam that maximizes the SO’s expected profit is built

on a multilevel scheme. The reason for this effect is that the agents overestimate the

number of downline recruits more than they overestimate the number of people they

directly recruit in this behavioral model.

To obtain a better understanding of MLM, we investigate a setting in which the

good is intrinsically valued. We solve for the SO’s optimal scheme under two behavioral

assumptions. First, if the agents are fully rational, then the optimal scheme does not

charge a license fee, nor does it pay recruitment commissions. Second, when agents

are analogy-based reasoners, then the properties of the optimal scheme depend on the

demand for the good. When the demand is sufficiently large, the optimal scheme looks

just like when agents are fully rational. However, when the demand is sufficiently small,

the optimal scheme charges a license fee and pays for at least two levels of recruitment.

Thus, the tools that pure pyramid scams are based on—recruitment commissions and

4



license fees—disappear when there is a large demand for the good and emerge again

when the demand is small.

Our results connect the SO’s ability to scam the agents to the use of reward schemes

that charge license fees and pay recruitment commissions. We study the implications

of banning these tools within the model and show that such a regulation can reduce

the profit of an SO who faces analogy-based reasoners. However, there is a limit to

this negative effect. Even under such a regulation, the SO can still obtain an expected

profit that is at least as high as the fundamental value of the operation, namely, the

expected profit that an unregulated SO could obtain when facing fully rational agents.

Related literature

Our paper relates to a strand of the behavioral industrial organization literature that

studies the market settings and contractual features that enable firms to exploit agents

who are subject to different biases.7 Spiegler (2011) offers a textbook treatment of

such models. In Eliaz and Spiegler (2006, 2008), a principal interacts with agents who

differ in their ability to predict their future tastes. In Gabaix and Laibson (2006),

firms may hide information about add-on prices from unaware consumers. Grubb

(2009) studies contracting when agents are overconfident about the accuracy of their

forecasts of their own future demand. Crawford et al. (2009) and Jehiel (2011) study

manipulative auction design. Heidhues and Kőszegi (2010) study exploitative credit

contracts when consumers are time-inconsistent. Grubb (2015) illustrates how various

contractual features can be used to exploit overconfidence (e.g., automatic renewal).

While this literature is not insubstantial, the various contractual features inherent in

MLM are not fully understood.

We use the analogy-based expectation equilibrium (Jehiel, 2005) as our behavioral

framework. A closely related concept, the partially cursed equilibrium, was developed

by Eyster and Rabin (2005) for Bayesian games. In a partially cursed equilibrium,

agents fail to realize the extent to which the other players’ actions depend on their

private information. Piccione and Rubinstein (2003) study intertemporal pricing when

consumers reason in terms of a coarse representation of the correct equilibrium price

distribution. Other prominent models in which players’ reasoning is coarse are Jehiel

7A related strand of the literature studies the vulnerability of nonstandard preferences or of non-
standard decision-making procedures to exploitative transactions (“Dutch Books”). For example, see
Laibson and Yariv (2007) and Rubinstein and Spiegler (2008).
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and Koessler (2008), Mullainathan et al. (2008), Eyster and Piccione (2013), Guarino

and Jehiel (2013), and Steiner and Stewart (2015).

The pure pyramid scams in our model resemble speculative bubbles (note that bub-

bles do not include the design and recruiting aspects of a pyramid). Shiller (2015) de-

scribes such bubbles as naturally occurring Ponzi processes.8 Bianchi and Jehiel (2010)

and Moinas and Pouget (2013) show that the analogy-based expectation equilibrium

logic can sustain a bubble, and Jehiel (2005) shows that it can sustain cooperation in

the finite-horizon centipede game, which can be interpreted as a speculative bubble.9

Abreu and Brunnermeier (2003) and Moinas and Pouget (2013) study models in

which investors become aware of a finite bubble sequentially and face uncertainty about

the time at which the bubble started. In both models, a bubble can be sustained in

equilibrium under common knowledge of rationality. Unlike in these models, in the

present paper classic no-trade arguments (Tirole, 1982) hold and so uncertainty about

the time at which the operation started cannot lead to participation in a pure pyramid

scam without deviations from the rational expectations paradigm. The reason that no-

trade arguments do not hold in the previous models is either that the induced trading

game is not a negative-sum game (in Abreu and Brunnermeier’s model) or that traders

can suffer a (potentially) infinite loss (in Moinas and Pouget’s model). In our game, on

average, pyramid scam participants incur losses, and their potential loss is bounded.

MLM enterprises have received considerable attention outside of the economics

literature. A strand of the computer science literature (see, e.g., Emek et al., 2011;

Babaioff et al., 2012) focuses on MLM mechanisms’ robustness to Sybil attacks. The

marketing literature has addressed ethical issues in MLM and the resemblance of such

schemes to pyramid scams. The common view in that literature is that a company is

a pyramid scam if the participants’ compensation is based primarily on recruitment

rather than sales to end users (see, e.g., Koehn, 2001; Keep and Vander Nat, 2002).

The paper proceeds as follows. The model is presented in Section 1. Sections 2 and

3 provide benchmark results about the social optimum and the SO’s optimal scheme

when agents are fully rational. Section 4 investigates pure pyramid scams and Section

8Ponzi schemes and pyramid schemes are related and these terms are often used synonymously,
they are different in several important aspects. In particular, Ponzi scheme participants are not
required to recruit new members in order to make a profit. Moreover, they sometimes believe that an
ordinary investment underlies the operation. For example, the participants in Wincapita, a Finnish
Ponzi scheme, did not know the true nature of the scheme until it collapsed (Rantala, 2019).

9For other prominent behavioral theories of bubbles see Harrison and Kreps, (1978) and DeLong
et al. (1990).
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5 studies MLM using ABEE. Section 6 examines the implications of leading behavioral

models for our results, and Section 7 concludes.

1 The Model

There is a scheme organizer (SO) who produces a good free of cost and with no capacity

constraints, and a set of agents I = {1, ..., n}. Each agent i ∈ I has a unit demand

and a willingness to pay ωi ∈ {0, 1} that is drawn by nature when i enters the game.

For each i ∈ I, denote q := Pr (ωi = 1).

In each period t = 1, 2, ..., n, one agent enters the game. We refer to the t-th entrant

as agent it. Upon entering the game, agent it meets one player j ∈ {SO, i1, ..., it−1}
chosen uniformly at random by nature.10 For example, agent i2 meets either the SO

or agent i1, each with probability 0.5. In period 1, the SO can offer agent i1 the

opportunity to purchase a distribution license. Conditional on receiving an offer, i1

can accept or reject it. Let D1 = {SO, i1} if i1 accepts an offer and D1 = {SO}
otherwise. In each period t > 1, if agent it meets a player j ∈ Dt−1, then j can offer

him the opportunity to purchase a distribution license. If he receives an offer, it can

accept or reject it. Let Dt = Dt−1∪{it} if it accepts an offer and Dt = Dt−1 otherwise.

Let G denote the directed tree, rooted at the SO, that is induced by the above

process, where each node represents an agent and each meeting is represented by an

edge that points away from the root. We use d (i, j) to denote the length of the directed

path from i ∈ I ∪ {SO} to j ∈ I if such a path exists.

To illustrate the game tree, suppose that, at the end of period 9, G is as presented

in Figure 1 and D9 = {SO, i1, i2, i3}. Recall that agent i10 is equally likely to meet

each j ∈ {SO, i1, ..., i9}. If i10 meets j ∈ D9, then j decides whether or not to make

i10 an offer. If i10 meets an agent j 6∈ D9, then agent i10 does not receive an offer.

SO i1 i2 i7

i9i4i5 i6

i3i8

Figure 1: A snapshot of G at the end of period 9.

Agents in the model make two types of strategic choices: whether to accept an offer

10We assume that nature makes her choice at the beginning of period t.
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upon entering the game, and, conditional on purchasing a license, whether to make

offers when they meet agents later in the game. The choice of whether to purchase

the good for personal consumption is modeled in a nonstrategic manner, and will be

clarified in the next paragraph. In each period t, every player i ∈ {SO, i1, ..., it} knows

the period t, his immediate predecessor in G, the realization of the subtree of G rooted

at i up to period t, and, for every agent j in that subtree, whether j accepted an offer

and whether j bought the good. Denote by Hi the set of information sets in which

player i ∈ I ∪{SO} moves. Player i’s strategy is a mapping σi : Hi → {0, 1}, where in

each h ∈ Hi, i chooses whether or not to make an offer, or else chooses whether or not

to accept one. We use σ = (σi)i∈I∪{SO} to denote a profile of strategies.

Distributors are paid according to a reward scheme that consists of:

• A license fee φ ≥ 0.

• Recruitment commissions: a1, a2, a3, ... ≥ 0.

• Sales commissions: b1, b2, b3, ... ≥ 0.

• A price η > 0 for which each unit of the good is sold.

When agent it accepts an offer, he pays φ to the SO and the SO pays a commission of

ad(l,it) to every distributor l on the directed path from the SO to it. We assume that,

for each t ∈ {1, ..., n}, upon entering the game, agent it purchases a unit of the good for

personal consumption if and only if both (i) ωit ≥ η and (ii) it’s immediate predecessor

in G is a member of Dt−1 (i.e., a distributor or the SO). If agent it purchases the

good, then he obtains an additional utility of ωit , pays η to the SO, and the SO pays

a commission of bd(l,it) to every distributor l on the directed path from the SO to it.

In addition to the commissions, when an agent accepts an offer, he incurs a cost of

c > 0, which reflects the cost of learning how to market the good, and the person

who recruited him incurs a cost of ĉ > 0, which reflects the cost of training the new

distributor.11

We denote by Γ(R) the game that is induced by the reward scheme R. Agents

maximize their expected payoff in Γ(R) given the reward scheme and their beliefs

about other players’ behavior. The highest expected payoff the SO obtains across all

equilibria of Γ(R) is denoted by π(R).

The SO faces the risk that the distributors will create fictitious recruits in order

11It is possible to incorporate moral hazard into the model by adding a choice of whether to train
the new recruit without changing the key results of the paper.
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to become eligible for additional commissions.12 Motivated by this risk, we shall focus

on schemes where aτ ≤ φ and bτ ≤ η for every τ ≥ 1, and refer to such schemes as

incentive-compatible (IC) schemes. This constraint implies that for a distributor, the

cost of creating a fictitious new tree of sales and recruits is greater than the direct

benefit of doing so (i.e., the transfers from the SO to the root). The incentive com-

patibility constraint rests on the assumption that the SO can verify13 the identity of

any distributor who wishes to receive commissions and, therefore, even if a distributor

were to create a fictitious recruit, he would not be able to collect the commissions that

the fictitious recruit is eligible to receive.

Discussion: Meeting process

We borrow the meeting process from the applied statistics literature, where it is referred

to as the uniform random recursive tree model (for a textbook treatment, see Drmota,

2009).14 This process rests on the assumptions that there is a deterministic date at

which the game ends and that each agent is directly connected to only one agent

upstream. Our main results do not depend on these assumptions. Nonetheless, we use

this process since it allows us to convey the main messages while keeping the exposition

simple. As we show in the Supplemental Appendix, the main insights hold when there

is uncertainty about the length of the game and when agents can be connected to

multiple agents upstream.

2 The Social Optimum

From a social perspective, the cost of turning agent it into a distributor is c + ĉ: c is

incurred by it when learning how to market the good, and ĉ is incurred by his recruiter

when training it. Recall that agents consume the good only if they meet a distributor

upon entering the game. In expectation, agent it meets

vt := E

[
|{j ∈ I : d(it, j) = 1}|

]
=

1

t+ 1
+ ...+

1

n
(1)

12In the computer science literature, manipulations in this spirit are often referred to as local false-
name manipulations or local splits (see, e.g., Emek et al., 2011; Babaioff et al., 2012).

13We shall discuss the verifiability assumption in detail in the concluding section.
14Gastwirth (1977) and Bhattacharya and Gastwirth (1984) used this model to examine two real-

world pyramid scams and to demonstrate that only a small fraction of the participants can cover the
license fees. In none of these papers, however, is there strategic interaction.
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new entrants in periods t + 1, ..., n (for completeness, let vn := 0). Thus, if agent it

becomes a distributor he can provide the good to vt agents who would not consume it

otherwise, where q of them are willing to pay 1 for the good. Hence, the direct social

benefit from turning agent it into a distributor is qvt. This cost-benefit analysis leads

to the following definition.

Definition 1 A reward scheme R is said to be socially optimal if there exists an equi-

librium of Γ(R) in which, in every period t ∈ {1, ..., n}, if qvt > c+ ĉ, then the entrant

purchases a license and, if qvt < c+ ĉ, then he does not purchase a license.

Note that Definition 1 takes into account only direct sales. If qvt > c + ĉ, then it

is socially desirable that agent it will purchase a license even if we do not take into

account downline sales. Since vt is monotonically decreasing in t, if qvt < c + ĉ, then

from a social perspective it is best if agent it does not recruit anyone. Thus, when

looking for a socially optimal scheme we can ignore downline sales and recruitment.

3 Fully Rational Agents

Our objective in this section is to understand the properties of reward schemes that

maximize the SO’s expected payoff when he cannot scam the agents. To this end, we

assume that agents are fully rational and, hence, not vulnerable to deceptive practices.

In this setting, the reward scheme incentivizes agents to sell the good and recruit others

to the sales force, which allows the SO to reach potential customers to whom he is not

directly connected who would not buy the good otherwise.

To capture that the agents are fully rational, we use perfect Bayesian equilibrium

(PBE) to solve the model. A scheme R is said to be profit-maximizing if there exists

no IC scheme R′ such that πPBE(R′) > πPBE(R). Throughout the analysis, we assume

that an agent who is indifferent whether to accept an offer or not accepts it, and that

a distributor who is indifferent whether to make an offer or not makes it.15 To avoid

trivial cases in which the reward scheme is essentially irrelevant, we shall assume in

this section that n is sufficiently large such that in every PBE of a profit-maximizing

scheme at least two agents purchase licenses. In the Supplemental Appendix, we show

that this requirement is satisfied when qv4 > c+ ĉ, where v4 is given in (1) for t = 4.

15Our results are not sensitive to these assumptions since agents break their indifference in favor of
accepting and making offers in the PBE that maximizes the SO’s expected payoff.

10



Consider the agents’ perspective. Since the likelihood of meeting new entrants goes

down over time, agents who enter the game in its early stages meet more people, and

so have more opportunities to sell the good and recruit new members. As the cost

of purchasing a license is fixed, early entrants find it more beneficial to purchase a

license than later entrants. Moreover, since the cost of training a new recruit is fixed,

distributors find it more beneficial to recruit a new entrant in the early stages of the

game rather than in its later stages (we say that a distributor recruits an agent if he

makes an offer to the latter and the latter accepts). The next lemma formalizes this

argument and shows that the equilibrium of the game has a threshold structure.16

Lemma 1 Consider a reward scheme R in which η ≤ 1. In a PBE of Γ(R):

1. If agent it receives an offer, he accepts it if and only if vtqb1 ≥ c+ φ.

2. A distributor who meets agent it recruits him if and only if vtqb1 ≥ c + φ and

vtqb2 ≥ ĉ− a1.

Lemma 1 establishes that agents’ PBE behavior depends only on φ, b1, a1, and b2.

Hence, schemes that pay higher-order commissions can only increase the SO’s cost and

reduce his profit. Therefore, in the remainder of this section, we shall focus on schemes

in which a2 = a3 = ... = 0 and b3 = b4 = ... = 0.

Having considered the agents’ perspective, we now turn to study the scheme that

maximizes the SO’s expected payoff.

Theorem 1 If R is IC and profit-maximizing, then φ = 0 = a1.

To understand why charging a license fee is detrimental to the SO, consider the

last agent who is supposed to buy a license in a PBE and denote him by k. At the

optimum, agent k is indifferent whether to buy a license or not as, otherwise, the SO

could increase his profit by charging a higher license fee without affecting the agents’

equilibrium behavior. Suppose that the SO eliminates the license fee and, at the same

time, lowers the commission b1 such that agent k remains indifferent. This exercise has

no effect on the expected net transfers from the SO to agent k. However, it reduces the

expected net transfers the SO makes to agents who buy a license prior to agent k. The

reason is that the reduction in b1 has a stronger effect on agents who make more sales

while the reduction in φ is independent of sales. In other words, scaling down φ and

16The lemma assumes that η ≤ 1 as, otherwise, agents do not purchase the good and πPBE(R) = 0.
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b1 reduces the rents agents obtain by purchasing a license early in the game. Thus, by

eliminating the fee and reducing b1 the SO increases his expected payoff.

Observe that IC schemes that do not charge a license fee cannot pay directly for

recruitment; that is, φ = 0 implies that a1 = 0. Thus, by refraining from charging a

fee the SO loses some flexibility in choosing how to incentivize distributors to recruit

new members: he must use b2 rather than a1 or a combination of the two commissions.

As we show in the proof, this effect is of second order such that the SO is better off

using a scheme that does not charge a license fee and does not pay for recruitment.

We can conclude that to maximize his expected payoff, the SO pays b1 for direct

sales and b2 for indirect sales. As Lemma 1 shows, the agents’ behavior is characterized

by two thresholds, k1 and k2 ≤ k1, such that every agent who enters the game up to

period k1 accepts every offer he receives, distributors recruit every agent they meet up

to period k2, and the SO is the only one making offers in periods k2 + 1, ..., k1. In a

profit-maximizing scheme, agent ik1 must be indifferent whether to accept an offer or

not and distributors must be indifferent whether to recruit agent ik2 or not. Hence, by

Lemma 1, b1 = c
qvk1

and b2 = ĉ
qvk2

in a profit-maximizing scheme.

Lemma 1 also allows us to find socially optimal schemes. By Definition 1, if m =

max{t|qvt ≥ c + ĉ}, then every scheme where the first m entrants (and only them)

purchase a license in a PBE of its induced game is socially optimal. By Lemma 1,

any scheme that pays b1 = c+φ
qvm

, b2 = ĉ−a1
qvm

, and that charges η = 1, incentivizes

this behavior. In particular, there exists a socially optimal scheme R̂ that pays b̂1 =
c

qvm
, b̂2 = ĉ

qvm
, â1 = 0, and that charges η̂ = 1 and φ̂ = 0. Since qvm ≥ c + ĉ, R̂ is IC.

The next corollary summarizes this finding.

Corollary 1 There exists an IC socially optimal scheme that does not charge a license

fee and does not pay recruitment commissions.

In the Supplemental Appendix (Proposition 13), we show that profit-maximizing

schemes are not socially optimal unless n is small. In general, profit-maximizing

schemes pay lower commissions and incentivize fewer agents to become distributors

than is socially optimal. From the SO’s perspective, increasing the number of distrib-

utors from t − 1 to t entails paying higher commissions that make it worthwhile for

it to buy a license. Since all agents are paid according to the same reward scheme,

by increasing the commissions the SO essentially forgoes some of the profit from the

first t − 1 distributors’ sales. The social point of view ignores this effect and, there-

fore, socially optimal schemes induce more distributors relative to profit-maximizing
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schemes.

The results in this section show that the SO does not benefit from using recruitment

commissions and charging license fees and that he need not use these tools to maximize

social welfare when facing fully rational agents. This might suggest that if license

fees and commissions are used, then some kind of agent irrationality is involved. In

the following sections, we study settings in which agents are boundedly rational and

investigate in which situations these components of the reward scheme can be useful

both from the SO’s perspective and from the social perspective.

4 Pure Pyramid Scams (q = 0)

To capture the idea that the main “product” being traded in a pyramid scam is the

right to recruit others to the pyramid, we set q = 0, in which case it is commonly known

that the only products that are being traded in the model are distribution licenses.17

Intuitively, such a market should not exist as trade in distribution licenses does not

add any value. Indeed, at the social optimum, no agent purchases a license in this case.

If q = 0 and there exists a scheme R such that the SO makes a strictly positive

expected profit in an equilibrium of its induced game, then we say that the SO can

sustain a pure pyramid scam. Proposition 1 establishes that when all of the agents are

fully rational, he cannot do so.

Proposition 1 Let q = 0. There exists no IC scheme R such that πPBE(R) > 0.

When q = 0, reward schemes induce negative-sum transfers between the agents and

the SO. Proposition 1 then follows from classic no-trade arguments (Tirole, 1982).

Our main objective is to understand the forces and compensation plans that enable

pyramid scams to operate. As Proposition 1 shows, it is impossible to do so by means of

the classic rational expectations model and we shall therefore depart from this model.

4.1 The baseline behavioral model

Jehiel (2005) suggests an elegant framework that incorporates partial sophistication

into extensive-form games. In this framework, different contingencies are bundled into

17As will become clear later, the main insights we obtain in this section remain valid when q > 0
as long as q is small with respect to c and ĉ.
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analogy classes and the agents are only required to hold correct beliefs about the other

agents’ average behavior in every analogy class.

Our agents have this type of correct, yet coarse, perception of the other agents’

behavior. They understand the frequencies at which the other agents accept and make

offers. However, they do not understand the time-contingent nature of the other agents’

behavior. In simple words, agents do not base their expectations that offers will be

accepted on the time at which they are made. Instead, they pool all offers made at

any point in time and consider the average rate of offer acceptances. Thus, agents

view other agents’ behavior as if it were time-invariant and underestimate the extent

to which it becomes more difficult to recruit new members over time.

In equilibrium, the agents’ beliefs about the other agents’ behavior are statistically

correct, and can be interpreted as a result of learning from partial feedback about the

behavior in similar games that were played in the past (e.g., similar schemes organized

by the SO). One motivation for the agents’ coarse reasoning is that obtaining feedback

about the aggregate behavior in these past schemes’ induced games might be easier

than gathering information about the time and context in which each offer was made.

Formally, for each i ∈ I we denote by H1
i the set of information sets in which i

chooses whether or not to purchase a license, and by H2
i the set of information sets in

which i chooses whether or not to make an offer. Let M1 := ∪i∈IH1
i and M2 := ∪i∈IH2

i .

We refer to M1 and M2 as the agents’ analogy classes and denote by rσ (h) the objective

probability of reaching h ∈M1∪M2 conditional on the profile σ being played. For each

i ∈ I, βi = (βi1, β
i
2) are agent i’s analogy-based expectations about the other agents’

behavior. A strategy σi is a best response to βi if it is optimal given a belief that each

agent j 6= i accepts every offer he receives with probability βi1 and that, if j has the

opportunity to make an offer, then he makes it with probability βi2. Let β := (βi)i∈I .

Definition 2 Agent i’s analogy-based expectations βi are said to be consistent with the

profile of strategies σ if, for every k ∈ {1, 2}, it holds that βik =
∑
h∈Mk

rσ(h)σ(h)∑
h∈Mk

rσ(h)
whenever

rσ (h) > 0 for some h ∈Mk.

Definition 3 The pair (σ, β) forms an analogy-based expectation equilibrium (ABEE)

if, for each i ∈ I, βi is consistent with σ and σi is a best response to βi.

Consistency implies that, in an ABEE, βi1 = βj1 and βi2 = βj2 for every pair of agents

i, j ∈ I. Therefore, we shall omit the superscript and use β1 and β2 instead.

Discussion: Consistency, analogy classes, and the SO’s strategy
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Consistency. Definition 1 does not place any restrictions on the agents’ beliefs

about analogy classes that are not reached with strictly positive probability. We can

refrain from placing such restrictions as the only equilibria in which M1 and M2 are not

reached with strictly positive probability are equilibria in which the SO never makes

any offers, which are of secondary interest and do not change our results.

Consistency implies that the agents’ expectations β1 match the proportion of ac-

cepted offers. An important feature of consistency is that information sets are weighted

according to the likelihood of their being reached. To see this, let n = 3 and consider

a profile σ in which the SO makes an offer in period 1 and, in each period t ∈ {2, 3},
every i ∈ Dt−1 makes an offer if he meets an agent. Moreover, suppose that agent i1

accepts the SO’s offer and all other agents reject every offer they receive. Note that

agents i1 and i2 always receive an offer under σ. Agent i3 receives an offer with proba-

bility 2
3

since, with probability 1
3
, he meets agent i2 who does not have a license. Only

the first of the 8
3

offers is accepted. Hence, β1 = 1
1+1+ 2

3

= 3
8
> 1

3
is consistent with σ.

Analogy classes. Each agent i’s analogy classes, M1 and M2, consist of all of the

information sets in which agents move, including information sets in which i himself

moves. This is consistent with interpreting i’s behavior as best responding to coarse

feedback about the behavior in similar games that were played in the past by a different

set of players (i.e., i himself did not play in these games). Note that since i was not a

player in these past games, his own actions do not affect his analogy-based expectations.

We could exclude the information sets in which agent i moves from his own analogy

classes. These alternative analogy classes are consistent with the interpretation of i’s

behavior as best responding to coarse feedback about the behavior in similar games in

which i himself played in the past. Our results hold under both types of partitions.

The SO’s strategy. The solution concept does not require that the SO’s strategy be

optimal. Thus, effectively, the SO is allowed to commit to a strategy. He can potentially

benefit from such commitment as his behavior affects β. The SO’s commitment power

allows us to simplify the exposition, but does not affect the results.

4.2 Structure and existence of pyramid scams

The main result of this section (Theorem 2) shows that the SO cannot sustain a pyramid

scam by means of a scheme that pays the distributors only for the number of licenses

they sell. Thus, behind every pyramid scam is a scheme that pays for at least two

levels of recruitment. Theorem 3 shows that if the number of potential participants is
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sufficiently large, a pyramid scam is sustainable and the necessary condition of Theorem

2 is tight. Finally, Theorem 4 shows that the SO may have to use more than two levels

of compensation to sustain a pyramid scam.

We start by showing that the SO cannot sustain a pyramid scam by means of

a reward scheme that compensates distributors only for the number of agents they

directly recruit. We shall refer to such schemes as 1-level schemes.

Definition 4 A reward scheme R is said to be a z-level scheme if aτ = 0 and bτ = 0

for every τ > z.

Theorem 2 Let q = 0. There exists no IC 1-level scheme R such that πABEE(R) > 0.

To gain intuition for this result, let us suppose for a moment that agents purchase

licenses in an ABEE and study their analogy-based expectations. Since the likelihood of

meeting new entrants decreases over time, there is a period t such that agents accept

offers up to period t and reject offers afterward. Nonetheless, distributors continue

making offers after period t because they falsely believe that the other agents might

accept them. In fact, each distributor tries to recruit every person he meets,18 and

so makes, in expectation, vt offers after period t, where vt is as given in (1). Thus,

every offer that is accepted in periods 1, ..., t results in a distributor who makes, in

expectation, vt offers after period t, which are all rejected. We can conclude that the

proportion of accepted to total offers, β1, cannot exceed 1
1+vt

.

Imagine agent it, the last agent who is supposed to purchase a license in our ABEE,

contemplating an offer. Conditional on accepting, he expects to make vt offers and

falsely believes that each of them will be accepted with probability β1. The more offers

he expects to make, the more offers are made (and rejected) late in the game, which

implies that β1 is lower. Overall, it falsely expects to recruit vtβ1 agents, which is less

than 1 regardless of how large vt is. If the scheme is IC, then a1 ≤ φ, which means that

no commission on his own sales would cover the fee paid. Hence, an ABEE in which

agents purchase licenses cannot exist in a 1-level scheme’s induced game.

The next result establishes that the SO can sustain a pyramid scam by means of a

2-level scheme if n is large.

Theorem 3 Let q = 0. There exists an integer n? such that an IC 2-level scheme R

for which πABEE(R) > 0 exists if and only if n ≥ n?.

18If a1 ≥ ĉ, distributors always find it optimal to recruit the new entrant. Note that, in a 1-level
scheme, if a1 < ĉ, then purchasing a license leads to a negative profit no matter how many individuals
one recruits, and so our conjectured ABEE cannot exist.
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The intuition for the existence result resembles the one behind the ABEE analysis of

the finite-horizon centipede game (Jehiel, 2005) and the capped bubble game (Moinas

and Pouget, 2013). In an ABEE in which agents accept offers, they accept offers up to

some period t and reject offers afterward. However, analogy-based reasoners view the

other agents’ behavior as if it were time-invariant: each agent falsely believes that each

of the other agents accepts offers with probability β1, even after period t. Thus, agent

it falsely expects that he will recruit new entrants, that his recruits will recruit new

entrants, and so on. This overoptimistic belief is what makes agent it pay the license

fee and join the pyramid.

What is the difference between multilevel schemes and 1-level schemes? Multilevel

and, in particular, 2-level schemes induce contracts that require prospective partici-

pants to assess not only the number of people they will recruit in the future but also

the number of recruits their recruits will recruit in the future. The agents’ imperfect

perception of the other agents’ behavior leads them to overestimate both of these vari-

ables. As we showed in Theorem 2, agents whose beliefs are statistically correct do

not overestimate their own ability to recruit by much and, therefore, the SO cannot

overcome the incentive-compatibility constraint and sustain a pyramid scam by means

of a 1-level scheme. In a similar manner, the agents do not overestimate their recruits’

ability to sell licenses by much. However, the accumulation of agents’ mistakes allows

the SO to overcome the incentive-compatibility constraint and sustain a pyramid scam.

In light of Theorem 3 it is elementary to ask whether there are cases in which the

SO must use more than two levels of compensation. The next result illustrates that

when n is small, the answer is affirmative.

Theorem 4 There exists an integer n?? < n? such that, for every n ≥ n??, there exists

an IC 3-level scheme R such that πABEE(R) > 0.

Generality of the results: A road map

Throughout this section, we imposed three main assumptions. First, we assumed that

q = 0, which made it salient that trade is inefficient. Second, we used a simple net-

work formation process, which allowed us to abstract from situations in which agents

are connected to multiple agents upstream and in which there are cycles in the so-

cial network. Finally, we assumed that agents’ beliefs are statistically correct, which

constrained the overoptimism of the agents and the SO’s ability to exploit them. We
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now relax these assumptions. In Section 5, we let q > 0 and show that the profit-

maximizing schemes resemble the ones identified in this section when the demand is

low, but when the demand is high, the profit-maximizing schemes resemble the ones

we identified in the rational expectations model of Section 3. In the Supplemental Ap-

pendix, we examine different models of social networks and show that the main results

of this section hold. Finally, in Section 6, we incorporate leading behavioral models

into our framework and provide additional support to the finding that multiple levels

of recruitment commissions can be a litmus test for exploitative MLM contracts.

5 Multilevel Marketing of Genuine Goods (q > 0)

We now examine an environment where the good is intrinsically valued and the agents

are vulnerable to deceptive practices. Thus, the SO can benefit both from the agents’

sales and from their mistakes. We start by studying a setting in which pyramid scams

are viable and the demand for the good is low (fixed n > n?, small q > 0). We

show that profit-maximizing schemes charge license fees and pay for multiple levels of

downline recruits, as the pure pyramid scams in Section 4. We then turn to the case

where the demand is large (fixed q > 0, large n) and show that, as in the rational

expectations case of Section 3, profit-maximizing schemes do not charge a license fee

and do not pay for recruitment.

We impose two mild assumptions in this section. First, note that due to their

risk neutrality and their different beliefs, both the agents and the SO can benefit

from raising the stakes of the contract. To guarantee that a profit-maximizing scheme

exists, we shall assume that the maximal amount that each agent can pay for a license

is B and that B is large w.r.t. c and ĉ. Second, to simplify the analysis, we fix an

arbitrary integer τ ? > 2 and restrict attention to τ ?-level schemes; i.e., we impose that

aτ = bτ = 0 for every τ > τ ?.

We start the analysis by showing that when q is sufficiently small, then profit-

maximizing schemes charge a license fee and pay for recruitment.

Proposition 2 For every n > n?, there exists a number q?(n) > 0 such that if q <

q?(n), then every IC profit-maximizing scheme charges a license fee and pays for at

least two levels of downline recruits.

When q goes to zero, the SO’s potential sales revenue goes to zero as well. However,

the potential profit from the agents’ mistakes does not vanish: agents are still willing
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to pay for distribution licenses given the “right” scheme and a budget B that is not

too small. To maximize his expected profit, the SO takes advantage of this mistake,

which, as noted in the previous section, requires charging a license fee and paying for

at least two levels of downline recruits.

Next, we establish that when the potential gains from sales are sufficiently large,

schemes that pay recruitment commissions or charge license fees are not profit-maximizing.

Proposition 3 Fix q > 0. There exists a number n̂ such that if n > n̂, then, in every

IC profit-maximizing scheme, a1 = a2 = ... = b3 = b4 = ... = φ = 0, b1 > 0, and b2 > 0.

Charging a license fee enables the SO to make a profit from the agents’ mistakes.

However, as noted in Section 3, the license fee has an additional, indirect, negative effect

on the SO’s profit from sales: a fee makes it more costly to become a distributor, which

requires paying higher commissions to attract prospective distributors. This effect

becomes stronger when the potential profit from sales qn is large. In such instances,

the SO uses many distributors to increase the number of agents who purchase the good.

Thus, he has to pay multiple commissions for every sale and every recruitment such

that raising the commissions to compensate for the license fee becomes extremely costly

and the SO is better off not charging a license fee. Note that an IC scheme that does

not charge a license fee cannot pay for recruitment either. Thus, profit-maximizing

schemes do not charge license fees and do not pay recruitment commissions.

Proposition 3 shows that when the demand is large, the SO cannot benefit from

extending the scheme beyond level two. Note that this is different from the case in

which q is small, where the SO may find it beneficial to do so (Theorem 4 shows this

for q = 0 and can be extended to the case of small q > 0).

The main findings of this section are summarized in the following corollary.

Corollary 2 There exists a number ñ such that for every n > ñ:

• If q is sufficiently large, then in every IC profit-maximizing scheme a1 = ... =

aτ? = b3 = ... = bτ? = φ = 0.

• If q is sufficiently small, then in every IC profit-maximizing scheme φ > 0, a1 > 0,

and a2 > 0. Moreover, it is possible that aτ > 0 for τ > 2.

Banning recruitment commissions and license fees
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Proposition 2 shows that there are instances in which banning recruitment commissions

and license fees strictly reduces the SO’s potential profit. The next result establishes a

bound on this effect by showing that, even under such restrictions, the SO’s potential

expected payoff is no lower than his potential expected payoff when he is not restricted

and agents are fully rational. The latter payoff can be viewed as the fundamental value

of the operation.

Proposition 4 For every scheme R, there exists an IC 2-level scheme R̃ such that

φ̃ = ã1 = ã2 = 0 and πABEE(R̃) ≥ πPBE(R).

In Section 3, it was established that when agents are fully rational there is an IC

profit-maximizing 2-level scheme R̃ in which ã1 = ã2 = φ̃ = 0. Proposition 4 shows

that the agents’ behavior in a PBE of Γ(R̃) is identical to their behavior in an ABEE

of Γ(R̃) such that the SO’s expected payoff is the same under both solution concepts.

To understand why analogy-based reasoners behave as if they were fully rational,

note that these agents correctly predict (i) how many units of the good they will sell

in the future and (ii) how many units their recruits will sell conditional on buying a

license. In the ABEE/PBE of Γ(R̃), these are the only variables agents have to estimate

in order to assess whether to buy a license and whether to recruit new entrants.

The social optimum

The IC 2-level scheme R̂ that was introduced in Section 3 incentivizes the same socially

optimal behavior both under ABEE and under PBE. The intuition and proof for this

result are similar to those of Proposition 4. For brevity, they are omitted.

Corollary 3 There exists an IC socially optimal scheme that does not charge a license

fee and does not pay for recruitment.

In general, IC socially optimal schemes are not profit-maximizing.19 When qn is

large, they induce more distributors and pay higher commissions than profit-maximizing

schemes as in the baseline model of Section 3 and for similar reasons. When n is

large but q is small such that qn is small, IC socially optimal schemes are not profit-

maximizing either, but for a different reason: they induce fewer distributors than

profit-maximizing schemes (whose main objective is to benefit from the fees these dis-

tributors pay). Indeed, Proposition 2 shows that even when q is small such that MLM

19See Section B.2.2 in the Supplemental Appendix.
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is not socially optimal, profit-maximizing schemes can incentivize some of the agents

to purchase a license. Thus, under ABEE, compared to the social optimum, when the

demand is small profit-maximizing schemes induce too many distributors but when it

is large they induce too few distributors.

Non-distributor consumers. When profit-maximizing schemes induce more distrib-

utors than socially optimal ones, distributors incur losses. However, it also means that

more agents consume the good relative to the social optimum. While in our model,

due to the binary demand, these consumers are left with no surplus, under a more re-

alistic demand structure these consumers would enjoy a higher expected utility than at

the social optimum. Thus, when the demand for the good is small, profit-maximizing

schemes can leave the SO and the non-distributor consumers with a higher surplus than

they would obtain at the social optimum at the expense of some of the distributors.

6 Alternative Behavioral Explanations

The main behavioral model used in the paper captures the idea that agents do not fully

grasp how difficult it becomes to recruit new members over time. We now consider

alternative models of distorted beliefs that capture psychological phenomena that can

be relevant in the context of MLM, adapt them to this paper’s framework, and study

their implications for our results. We start with a model of motivated reasoning in

which individuals derive anticipatory utility from expecting good future outcomes and

deceive themselves into holding overoptimistic beliefs. We then turn to a model of

cognitive hierarchies in which individuals believe that they understand the setting

better than others. Finally, in the Supplemental Appendix, we study a model of social

networks in which agents correctly predict the probability with which their direct

friends accept offers but neglect the correlation between this probability and the number

of friends their friends have. The main message in all of these models is that multiple

levels of recruitment commissions facilitate scams.

Motivated Reasoning

Brunnermeier and Parker (2005) develop a model of motivated reasoning in which in-

dividuals derive anticipatory utility from expecting that good things will happen in the

future.20 In their model, individuals deceive themselves into holding (potentially) false

20For a comprehensive review of the idea of motivated reasoning see Bénabou and Tirole (2016).
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beliefs, while balancing between anticipatory utility gains and the fact that distorted

beliefs can lead to suboptimal choices in the future. Brunnermeier and Parker show

that this type of reasoning leads to overoptimism and has significant implications in

situations where returns are positively skewed, such as MLM.21

We now adapt Brunnermeier and Parker’s behavioral model to our framework. In

the spirit of their prescription, we assume that “each agent’s beliefs are set taking

as given the reaction functions of other agents.” We simplify the model to the bare

minimum by setting ĉ = 0 such that every distributor who meets an agent finds it

optimal to recruit him. This allows us to posit that distributors always make an offer

when they meet an agent and focus only on the agents’ decisions whether to buy a

license or not. It should be stressed, however, that the result presented in this section

is unaffected by this assumption. To guarantee that a profit-maximizing scheme exists,

we assume as in Section 5 that agents cannot pay more than B > 0 for a license.

We modify the baseline model by assuming that the order in which agents enter

the game is drawn uniformly at random at the beginning of the game and that agents

do not know the time at which they enter. When an agent receives an offer he updates

his beliefs based on the identity of the proposer. We denote by PRi(t|j) the objective

probability of i being the t-th entrant conditional on receiving an offer from j ∈ I ∪
{SO}. On the equilibrium path, PRi(t|j) is determined according to Bayes’ law.22

Agent i’s strategy si : {SO, 1, ..., n} → {0, 1} × ∆({1, ..., n}) specifies a belief

ri ∈ ∆({1, .., n}) and a purchasing decision σi ∈ {0, 1} as a function of the player who

made an offer to i. We use ri(t|j) to denote i’s subjective belief that he is the t-th

entrant conditional on receiving an offer from j. For each i ∈ I, let s−i = (sj)j∈I−{i}

and denote agent i’s expected rewards given that the other agents play s−i and i

purchases a license in period t from j by pt(s−i, j). Let ψ ∈ (0, 1) be the weight that

captures the magnitude of the agents’ anticipatory utility. A profile of strategies forms

an equilibrium if for each i ∈ I and j ∈ I ∪ {SO} agent i’s strategy maximizes

σi(j)

[
(1− ψ)

n∑
t=1

PRi(t|j)pt(s−i, j) + ψ
n∑
t=1

ri(t|j)pt(s−i, j)− φ− c
]
, (2)

subject to the requirements that (1) ri(t|j) = 0 whenever PRi(t|j) = 0 and (2) σi(j)

maximizes

21See, e.g., Herbalife (2019).
22We refrain from placing restrictions on the agents’ beliefs off the equilibrium path as the equilibria

we analyze have full support.
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σi(j)

[ n∑
t=1

ri(t|j)pt(s−i, j)− φ− c
]
. (3)

To simplify the analysis, we shall focus on symmetric equilibria, that is, equilibria in

which si(k) = sj(k) for every i, j ∈ I and k ∈ I ∪ {SO}.
Proposition 5 establishes that the potential profit of a scam is strictly larger with

multilevel schemes than it is with 1-level schemes.

Proposition 5 Set q = 0. There exists ñ such that for every n > ñ, there exist

ψ?(n) > 0 and ψ??(n) > ψ?(n) such that:

• If ψ < ψ?(n), then there exists no IC scheme R such that πBP (R) > 0.

• If ψ ∈ [ψ?(n), ψ??(n)), then there exists no IC 1-level scheme R such that πBP (R) >

0, but there exists an IC multilevel scheme R such that πBP (R) > 0.

• If ψ ≥ ψ??(n), then there exists an IC 1-level scheme R such that πBP (R) > 0.

However, every scheme that is both 1-level and IC is not profit-maximizing.

Proposition 5 relies on the fact that, in equilibrium, agents expect to recruit fewer

agents than the total number of agents they expect their recruits to recruit. To see why,

consider an agent who buys a license. He maximizes anticipatory utility by deceiving

himself into believing that he entered the game first (or second) and, hence, that he

is likely to recruit many agents. Since the likelihood of meeting new entrants goes

down over time, he expects to do most of the recruiting early in the game. Thus,

he expects to recruit mostly early entrants who are also likely to recruit many new

members themselves. Overall, our “first” entrant falsely expects that he will recruit v1

agents and that, in turn, these agents will recruit
∑n−1

t=2
vt
t
> v1 agents. When ψ < 1

this effect is mitigated by the agent’s objective beliefs but does not disappear.

The above argument implies that, all else equal, our agent is better off if the SO

increases a2 and reduces a1 by the same amount. For the SO, such a change saves

costs: he pays a1 for every distributor j such that d(SO, j) > 1 and pays a2 only if

d(SO, j) > 2. Thus, a 2-level scheme can induce a higher expected payoff for the SO

and a higher perceived payoff for the agents. Hence, the SO can sustain a scam by

means of a 2-level scheme when it is impossible to do so by means of a 1-level scheme

(intermediate ψ), and can increase his expected profit by means of a 2-level scheme

when it is possible to sustain a pyramid scam by means of a 1-level scheme (high ψ).
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So far, we have established that the scope to overestimate the value of a distribu-

torship and the potential profit of a scam increase when the SO moves from a 1-level

to a 2-level scheme. It is possible to apply the same argument to show that, for every

z, if n is sufficiently large, then there exists an IC (z + 1)-level scheme that induces a

strictly higher expected profit for the SO than every IC z-level scheme. That is, the

scope to exploit the agents strictly increases with the number of levels.

In broader terms, the distribution of rewards in the game is positively skewed:

agents who purchase a license early in the game can make a large profit while the

average agent incurs a smaller loss. As shown by Brunnermeier and Parker (2005), the

agents find this type of skewed distribution of rewards attractive: they deceive them-

selves into believing that high rewards are very likely. Essentially, this is what makes

the agents pay for a license when ψ is not too small. Roughly speaking, increasing

the number of levels of compensation enables the SO to increase the skewness of the

rewards distribution, thereby increasing the scope to overestimate the value of a license

and, as a result, increasing the potential profit of the scam.

Cognitive hierarchies

Level-k reasoning and cognitive hierarchy models are non-equilibrium models developed

to capture the way individuals behave in novel strategic situations.23 These models

posit that players anchor their beliefs in a naive representation of the world that is

supposed to capture how people would play the game instinctively. Individuals then

adjust their behavior iteratively, performing a finite number of steps. We now adapt

this approach to the context of MLM and pyramid scams, in which it makes sense to

think that for many participants the situation is novel.

To focus on the main insights of Section 4, let q = 0. The baseline setting is modified

by assuming that the cost ĉ is paid in advance regardless of whether a distributor

succeeds in recruiting an agent or not. This modification changes the interpretation

of this cost, but does not change the benchmark results of Section 3, in which, in

equilibrium, agents know who will accept their offers and who will reject them.

There are k+ 1 cognitive types l0, l1, l2, ..., lk. As in any model of level-k reasoning,

the analysis inevitably hinges on the agents’ naive model of the world, l0. We assume

that l0 agents buy a license with probability α0 > 0 and, conditional on buying a license,

make an offer to every agent they meet with probability α1 > 0. We assume that α0

23See Crawford et al. (2013) for a comprehensive review.
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is small with respect to B and ĉ and, in particular, α0 ≤ ĉ
B

. As in models of level-k

reasoning, we assume that agents of cognitive type lk best respond to a belief that all

other agents are of type lk−1. In the cognitive hierarchy approach of Camerer et al.

(2004), agents of type lk believe that other agents’ types are distributed on l0, l1, ..., lk−1.

However, this distinction does not play a role in our setting as the key interaction is

between types l0 and l1, whose behavior is identical under both approaches.

Type l0’s behavior is unaffected by the reward scheme. We now examine the be-

havior of higher cognitive types. We follow Crawford and Iriberri (2007) by assuming

that “the anchoring L0 type exists mainly in the minds of higher types” that is, we

assume that the support of the type distribution is {1, ..., k}.

Proposition 6 There exists no IC 1-level scheme R such that πLK(R) > 0. However,

there exists a number n such that if n > n, then there exists an IC 2-level scheme R

such that πLK(R) > 0.

Proposition 6 shows that under our assumption on l0, the threshold where pyramid

scams start being viable is two levels of compensation. To see why, consider an agent of

type l1. In a 1-level scheme, he earns a1 for every person he recruits and pays ĉ for every

offer he makes. Incentive compatibility implies that a1 is bounded by φ ≤ B. Since our

agent believes that other agents are of type l0 and, therefore, that they accept offers

with a probability of only α0 ≤ ĉ
B

, he thinks that making an offer yields a negative net

expected return. Taking the fee into account, he prefers not to purchase a license.

In a 2-level scheme, an agent of type l1 expects a1 for every person he recruits and a

passive income of a2 for every individual that person recruits. Thus, our agent believes

that recruiting an agent it yields a passive income of α0α1vta2. When n is large w.r.t. t,

our agent believes that it will sell many licenses and, therefore, that the passive income

component will be large (i.e., vt goes to infinity when n goes to infinity). Hence, for

sufficiently large values of n, l1 agents find it beneficial to purchase a license and to try

and recruit new members up to some period τ1(n). The larger n is, the larger τ1(n) is.

Agents’ behavior is monotone in their type. If l1 agents reject every offer (as in IC

1-level schemes), then l2 agents do not expect to recruit anyone and, therefore, reject

every offer as well. This logic can be iterated for higher types. On the other hand,

if l1 agents purchase licenses and make offers to every agent they meet up to period

τ1(n) and τ1(n) is sufficiently large, then agents of type l2 find it optimal to purchase

licenses and make offers up to some period τ2(n) < τ1(n) as they perceive other agents
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to be of type l1. This logic can be iterated for higher types as well. Hence, for large

values of n, there is a sequence of cutoffs τ1(n) > τ2(n) > ... > τk(n) > 0 such that lj

agents accept every offer up to period τj(n) and reject every offer made afterward.

7 Concluding Remarks

Legitimate MLMs and fraudulent pyramid scams are two widespread phenomena. Ex-

perts and potential participants often find it hard to distinguish between them. We

developed a model that enables drawing a boundary between the two based on observ-

able properties of their underlying reward schemes. The paper shows that a company

can make a profit even in instances in which participants’ beliefs are statistically correct

and its product has no intrinsic value. Sustaining such a scam requires the company

to charge a license fee and pay for at least two levels of downline recruits. We illus-

trated that when agents hold distorted overoptimistic beliefs that are not statistically

correct, it might be possible to sustain such a pyramid scam by means of a 1-level

scheme; however, in these instances, maximizing the company’s profit from a scam

requires using a multilevel scheme. In all of these pyramid scams, the company lures

the distributors by paying recruitment commissions and makes its profit from the fees

they pay. The paper’s benchmark results show that companies with a “good” product

that face rational agents find it detrimental to use these two tools.

In the model, MLM enables companies that produce good products to incentivize

agents to sell the product and recruit others to the sales force, thereby reaching pools

of customers who would not purchase its product otherwise. It is natural to ask what

is the advantage of MLM for such companies compared to more traditional marketing

methods. MLM could be appealing in situations where there is a great deal of uncer-

tainty about quality or fit. Consumers who are skeptical about a product’s quality or

whether it fits their specific needs would be reluctant to buy it at a high price. Tra-

ditional marketing channels may not allow the company to credibly communicate the

merits of its product. However, when a consumer buys from a friend as in the MLM

model, the latter might be better informed about the consumer’s specific needs and

the social capital in the interaction may allow him to credibly explain the merits of the

product. Hence, MLM can outperform traditional marketing channels by decreasing

uncertainty, thereby increasing the consumer’s willingness to pay for the product.

It is possible to embed the baseline model in a simple framework in which the SO

first learns q and then chooses whether to use MLM as in the baseline model or a more
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traditional marketing channel. The parameter q can be interpreted as the share of the

population for whom the product fits. Ex ante, each agent i does not know whether

the product is suitable for his needs (ωi = 1) or not (ωi = 0). As assumed throughout

the paper, in the MLM model, when agent i meets a distributor he becomes aware of

the product and learns ωi. Thus, with probability q the agent is willing to pay 1 for the

good. Under “traditional marketing,” an agent i who is targeted by the SO becomes

aware of the product but does not learn ωi. Thus, the agent is willing to pay q for

the product with probability 1. Instead of commissions, the SO incurs a marketing

cost of m per agent he targets. Thus, his profit if he targets n agents is n(q −m). In

conclusion, for small values of q, the SO is better off in the MLM model, while for large

q, the SO can be better off choosing the traditional marketing channel.

An alternative approach that complements the one presented in this paper is to

ask whether consumers are buying the company’s product or not. If distributors are

paying for licenses but consumers are not buying the product this can be indicative of

a fraud. However, in practice, sales data is not always easy to obtain. Moreover, it can

be difficult to distinguish between sales to other distributors in the network (who may

buy to become eligible for extra commissions) and sales outside the network. Finally, as

Proposition 2 shows, even if consumers are buying the product and thus the company

is not purely a scam, it can still be the case that the distributors are being exploited.

We shall conclude by discussing two modifications of the baseline setting.

Incentive compatibility

Throughout the paper we assumed that the SO uses IC schemes to prevent distribu-

tors from manipulating him by creating fictitious players. The incentive-compatibility

constraint prevents these manipulations when the SO can verify the identity of any

distributor who wishes to be paid (in practice, to be paid, MLM distributors are often

required to identify themselves). An SO who cannot verify the distributors’ identities

may wish to use a reward scheme where
∑n

τ=1 aτ ≤ φ and
∑n

τ=1 bτ ≤ η to prevent each

distributor from creating a tree of fictitious recruits and collecting the commissions

that all the nodes in the tree would be eligible for.

Below, we extend the network formation model and show that while 1-level schemes

cannot sustain a pyramid scam, 2-level schemes can sustain one, even under the stronger

incentive-compatibility constraint. Additional illustrations of this effect are given in

the Supplemental Appendix, where we consider deterministic social networks, and in
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Section 6, where we consider alternative behavioral models. The common component

in all of these cases is that there are agents who overestimate the number of downline

distributors they will have more than they overestimate the number of people they

will recruit themselves. Under ABEE, this occurs only in social networks where there

are some agents who have fewer successors/friends than their successors/friends have,

which is not the case under the uniform random recursive tree model.

Extension: Recruiting one’s friends

An individual who joins a scheme may find it natural to first approach his immediate

friends as approaching strangers is perhaps more difficult. Such individuals exhaust

their best opportunities to recruit new members soon after they join. In order to

roughly approximate this, we modify the network formation model such that each

player can meet new entrants only in the first period after he enters the game (i.e., an

agent who enters the game in period t can meet new entrants only in period t+1), and

we interpret these entrants as the agent’s friends. Moreover, we assume that in each

period t ∈ {1, ..., n}, µt > 0 new agents enter the game such that agents who enter the

game in period t have, in expectation, µt+1/µt friends they can make offers to. As in

the baseline model, the agent who meets each entrant is drawn by nature uniformly

at random. Observe that in this network formation model, agents do not necessarily

meet fewer agents than their successors.

We now show that, as in the baseline model of Section 4.2, 1-level schemes cannot

sustain a pyramid scam if a1 ≤ φ. Subsequently, we shall show that 2-level schemes

can sustain such a scam when a1 + a2 ≤ φ.

Set q = 0 and consider a profile in which every agent who receives an offer up to

period k < n accepts it, every agent who receives an offer in period k + 1 rejects it,

and every distributor who meets an agent in periods 1, ..., k + 1 makes him an offer.

Note that no offer is made after period k + 1. Every symmetric ABEE in which the

SO’s expected profit is strictly positive has this threshold structure under this network

formation process. Under this profile, µ1 + ...+µk+1 offers are made and µ1 + ...+µk of

them are accepted. Hence, β1 = µ1+...+µk
µ1+...+µk+1

and β2 = 1 are consistent with this profile.

Let µz/µz−1 = min {µ2/µ1, ..., µk+1/µk} and consider an agent i who purchases a license

in period z − 1. He analogy-based expects to sell µz
µz−1

β1 ≤ µ2+...+µk+1

µ1+...+µk+1
< 1 licenses,

which, if R is an IC 1-level scheme, will not cover the cost of becoming a distributor.

Hence, it is impossible to sustain a pyramid scam by means of a 1-level scheme.
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The profile that we have described above can be part of an ABEE of a 2-level

scheme’s induced game. For example, suppose that there are three periods, k = 1,

µ1 = 1, µ2 = 4, and µ3 = 40. As we calculated above, β1 = 0.2. An agent who enters

the game in period 1 analogy-based expects to recruit β1µ2 = 0.8 distributors and

analogy-based expects that these distributors will recruit β
2

1
µ3
µ1

= 1.6 distributors. If R

pays a1 = a2 = 0.5φ, an agent who enters the game in period 1 analogy-based expects a

payoff of 1.2φ−φ−c−0.8ĉ. An agent who purchases a license in period 2 analogy-based

expects to sell β1
µ3
µ2

= 2 licenses and, therefore, he analogy-based expects a payoff of

−c− 2ĉ and thus he finds it optimal not to purchase a license. Hence, for large φ, we

have an IC 2-level scheme R (that satisfies a1 + a2 ≤ φ) where πABEE (R) > 0.

Time-contingent compensation

Throughout the analysis we focused on stationary schemes. Such schemes are relatively

simple and can potentially conceal the non-stationary nature of the environment from

the agents. A natural question is whether the stationarity of the rewards limits the

SO’s expected payoff. In the Supplemental Appendix we address this question by

studying the problem of an SO who can use a sequence of schemes (Rt)
n
t=1, where an

agent who purchases a license in period t is paid according to Rt. First, we show that

when agents are fully rational the SO maximizes profits by charging a license fee that

decreases over time. The decreasing fee enables the SO to perfectly discriminate the

distributors on the basis of the time at which they purchase a license. This, in turn,

allows him to maximize the social surplus and capture all of it. Second, we show that

when agents are analogy-based reasoners, the SO can benefit from charging a license

fee that increases over time. The increasing fee loosens the incentive-compatibility

constraint: when the fee increases over time, the commissions can be higher than the

fee in some of the schemes in the sequence and so an agent who purchases a license

does not need to recruit many new members to recoup the fee paid. As a result, the

SO may be able to sustain a pyramid scam using a sequence of 1-level schemes even in

instances in which it would be impossible for him to sustain such a scam using a single

IC multilevel scheme.
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Appendix A: Proofs

Proof of Lemma 1. In expectation, regardless of the players’ strategies, an agent

who purchases a license in period t meets qvt agents who are willing to pay 1 ≥ η for

the good. Because of this independence, in a PBE, both on and off the equilibrium

path, all agents correctly expect that, conditional on purchasing a license, agent it will

sell qvt units of the good.

Part 1. For sufficiency, note that selling qvt units yields a payoff of qvtb1− c−φ to

agent it even if the latter does not sell licenses. For necessity, let t be the last period

in which an agent buys a license in a PBE (on and off the equilibrium path). Agent

it cannot expect to sell licenses in this PBE. Thus, he can expect a payoff of at most

qvtb1 − c − φ conditional on purchasing a license. Sequential rationality implies that

qvtb1− c−φ ≥ 0. Since vt is decreasing in t, it holds that b1qvk ≥ c+φ for every k ≤ t.

Part 2. For sufficiency, note that a distributor who recruits agent it earns a1 for

the recruitment and b2 for every unit it sells. Thus, if a1 + b2qvt ≥ ĉ the distributor

finds it optimal to recruit it even if he does not expect it to sell licenses. For necessity,

consider a PBE and let t be the last period in which both (i) qvtb1 ≥ c + φ and (ii)

a distributor is supposed to make an offer to an agent (on and off the equilibrium

path). Since qvtb1 ≥ c+φ, agent it accepts the offer. Moreover, the distributor cannot

expect it to recruit anyone and, therefore, the distributor believes that making an offer

to it yields an expected payoff of a1 + b2qvt − ĉ. Sequential rationality implies that

a1 + b2qvt − ĉ ≥ 0. Since vt is decreasing in t, a1 + qb2vk ≥ ĉ holds for every k ≤ t.

Proof of Theorem 1. Let R be an IC scheme that charges φ > 0 and η ≤ 1, and

denote by σ a profile of strategies that is part of a PBE in which the SO’s expected

profit is πPBE(R). Denote k1 = sup{t|b1qvt ≥ φ+ c}. By Lemma 1, if k1 < 2 under σ,

then at most one agent purchases a license in every PBE of Γ(R), and so R is not profit-

maximizing. In the remainder of the proof, we assume that k1 ≥ 2. If a1 + b2qv1 < ĉ,

let k2 = 1 and, otherwise, let k2 = sup{t|a1 + b2qvt ≥ ĉ and qvt ≥ φ + c}. Since vt is

decreasing in t, Lemma 1 implies that every offer made up to (resp., after) period k1

under σ is accepted (resp., rejected) and every distributor who meets an agent up to

(resp., after) period k2 recruits (resp., does not recruit) the latter.

To show that R is not profit-maximizing, consider a scheme R′ such that η′ = η,

a′1 = φ′ = 0, b′1qvk1 = c, b′2qvk2 = ĉ, and a2 = a3 = ... = b3 = b4 = ... = 0. Since vt is

decreasing in t, Lemma 1 implies that the agents’ behavior in σ is part of a PBE of
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Γ(R′). Hence, to show that πPBE(R′) > πPBE(R) we only need to show that the SO’s

expected payoff when σ is played is greater in Γ(R′) than in Γ(R).

Since η = η′, given σ, the SO’s revenue from sales is the same under both schemes.

We now show that the expected net transfers (i.e., after subtracting the license fees)

from the SO to the distributors when σ is played are greater in Γ(R).

Consider the expected net transfers from the SO to a distributor it. If d(SO, it) = 1

(i.e., the SO recruits it), then, under R, the SO collects φ from it and pays him b1 for

each of his sales. Under R′, the SO pays it b
′
1 for each sale. Note that

−φ+ qvtb1 ≥ −φ+ qvt(
c+ φ

qvk1
) ≥ qvt

c

qvk1
= qvtb

′
1, (4)

with the second inequality being weak for t = k1 and strict for t < k1.

If d(SO, it) > 1 (i.e., it is recruited by a distributor j ∈ I), then, under R, the SO

collects φ from it, pays a1 to j, and, for each of it’s sales, the SO pays b1 to it and b2

to agent j. Under R′, the SO pays b′1 to it and b′2 to agent j for each retail sale made

by it. The SO’s expected net transfers to the distributors are greater under R if

a1 − φ+ qvt(b1 + b2) ≥ a1(1− vt
vk2

)− φ(1− vt
vk1

) +
vtĉ

vk2
+
vtc

vk1
≥ qvt(b

′
1 + b′2). (5)

Since R is IC, a1 ≤ φ. As t ≤ k2 ≤ k1, (5) holds. We conclude that for every t ≤ k1

(resp., t < k1) the expected net transfers based on it’s recruitment and sales are weakly

(resp., strictly) lower in R′ under σ. Hence, πPBE(R′) > πPBE(R).

Note that b′1 ≤ η′ since R is IC and that b′1 ≤ b1. If b′2 > η, then, in Γ(R′), the

SO incurs a loss of b′1 + b′2 − η whenever a sale is made by a distributor i such that

d(SO, i) > 1. The SO can earn more than πPBE(R′) by using a scheme R′′ that is

identical to R′ except that b′′2 = 0 as distributors never recruit in Γ(R′′). Clearly, R′′ is

IC. Thus, if R′ is not IC, then R′′ is IC and πPBE(R′′) > πPBE(R).

We can conclude that R is not profit-maximizing. This means that a profit-

maximizing scheme must charge η > 1 (which induces a payoff of 0) or φ = 0. Incentive

compatibility implies that if φ = 0, then a1 = 0 as well.

Proof of Proposition 1. We prove this result by backward induction. Let R be an

IC scheme and consider a PBE of Γ(R). Sequential rationality implies that agent in re-

jects every offer he receives, both on and off the equilibrium path. Let t ∈ {1, ..., n−1}
and suppose that all agents reject every offer they receive (both on and off the path)
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after period t in our PBE. Agent it cannot expect to sell licenses. Since q = 0, he

cannot expect to meet any agent who will buy the good at a price η > 0 regard-

less of the other agents’ strategies. Being sequentially rational, he rejects every offer

he receives both on and off the equilibrium path. By induction, no agent purchases a

license in our PBE and, since q = 0, the SO does not sell the good. Thus, πPBE(R) = 0.

Proof of Theorem 2. Consider an IC 1-level scheme R. If a1 ≤ ĉ, then, conditional

on purchasing a license, an agent makes an expected payoff of at most −c − φ < 0.

Hence, no agent purchases a license in an ABEE of Γ(R).

Suppose that a1 > ĉ and consider an ABEE of Γ(R) in which the SO makes offers.

Clearly, agent in rejects every offer in this ABEE. Let t ∈ {1, ..., n − 1} and suppose

that agents reject every offer they receive in periods t + 1, ..., n. Since a1 ≥ ĉ, every

agent who holds a license at the end of period t makes, in expectation, vt offers in

periods t+ 1, ..., n. Thus, for every offer that is accepted in periods 1, ..., t there are, in

expectation, vt rejected offers in periods t+ 1, ..., n, and so the proportion of accepted

offers, β1, cannot exceed 1
1+vt

. Hence, conditional on accepting an offer, agent it falsely

expects a payoff of β1vt(a1 − ĉ)− c− φ. Since R is IC, a1 ≤ φ, and so it rejects every

offer he receives in our ABEE. We can conclude that no agent purchases a license in

our ABEE. Since q = 0, no agent ever buys the good. Hence, πABEE(R) = 0.

Proof of Theorem 3. The proof consists of three parts. Part 1 shows that if

πABEE(R) > 0 and R is an IC 2-level scheme, then a1 ≥ ĉ. Part 2 shows that if

there exists an IC 2-level scheme R such that πABEE(R) > 0 when there are n agents,

then there exists an IC 2-level scheme R′ such that πABEE(R′) > 0 when there are

n′ > n agents. Part 3 establishes that such a scheme exists if n is sufficiently large.

Part 1. Assume to the contrary that agents purchase licenses in an ABEE of an

IC 2-level scheme R in which a1 < c. A distributor who recruits agent it expects to

increase his payoff by a1− ĉ+β1β2vt. Since vt is decreasing in t, there is a cutoff k2 such

that distributors make offers to every agent they meet up to period k2 and make no

offers afterward. Moreover, no agent ever purchases a license in any period t ≥ k2 as he

knows that he will refrain from making offers. It follows that an agent who purchases

a license in period t < k2 falsely expects a payoff of

k2∑
j=t+1

1

j
β1[(a1 − ĉ) + β1β2vja2]− c− φ ≤ β1β2vt(vt − vk2)β1a2 − c− φ. (6)
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Consider the last period t in which an agent accepts an offer in our ABEE. Each

offer accepted in periods 1, ..., t leads in expectation to (i) vt − vk2 rejected offers after

period t and (ii) vt opportunities to make offers where vk2 of them are not made. Thus,

β1 ≤ 1
1+vt−vk2

and β2 ≤
1+vt−vk2

1+vt
. As R is IC, a2 ≤ φ. We conclude that (6) is strictly

negative, which violates the optimality of purchasing a license in this ABEE.

Part 2. Consider an IC 2-level scheme R such that πABEE(R) > 0. By Part 1,

a1 ≥ ĉ such that in an ABEE, every distributor makes an offer to every agent he meets.

In an ABEE that maximizes the SO’s expected payoff, there is a period k such that it

accepts (resp., rejects) every offer he receives if t ≤ k (resp., if t > k) and the SO makes

no offers after period k (as such offers are rejected and lower the agents’ expectations).

In this ABEE, β1 = 1
1+vk

and β2 = 1. Hence, agent ik falsely expects a payoff of∑n
j=k+1

1
j

1 +
∑n

j=k+1
1
j

(a1 − ĉ) +

∑n−1
j=k+1

∑n
j′=j+1

1
jj′

(1 +
∑n

j=k+1
1
j
)2

a2 − c− φ ≥ 0. (7)

Note that (7) is increasing in n. Thus, for any n′ > n, there is a scheme Rn′ that

is identical to R except that φn
′
> φ such that a profile of strategies in which agents

accept every offer up to period k, reject every offer made after period k, and in which

the SO makes no offers after period k, is part of an ABEE of Γ(Rn′). If πABEE(R) > 0

when there are n agents, then πABEE(Rn′) > 0 when there are n′ agents.

Part 3. Consider a profile of strategies σ in which agent i1 accepts an offer if he

receives one and all other agents reject every offer they receive, the SO makes an offer

only in period 1, and, conditional on purchasing a license, every agent makes an offer

to every agent whom he meets. The SO’s expected payoff is φ− ĉ under σ. Agent i1’s

analogy-based expected payoff in the ABEE that corresponds to σ is given in the LHS

of (7) for k = 1. As the harmonic sum diverges, when n goes to infinity, (7) goes to

a1 − ĉ + 0.5a2 − c − φ. Thus, for a sufficiently large n, we can choose φ, a1 ∈ (ĉ, φ],

a2 ≤ φ and b1 = b2 = 0 such that (7) holds in equality and the profile σ is part of an

ABEE in which the SO’s expected payoff is strictly positive.

Proof of Theorem 4. Consider an IC 2-level scheme R. In part 2 of the proof of

Theorem 3 we showed that if πABEE(R) > 0, then (7) must hold for some k ≤ n. For

a1 ≤ φ and a2 ≤ φ, (7) is smaller than vk
1+vk

φ +
∑n

j=k+1
vj
j
φ − φ − c, which is strictly
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negative if φ ≥ 0, n ≤ 25, and k ≤ n.

We now show that for n ≥ 25 there exists an IC 3-level scheme R such that

πABEE(R) > 0. Fix a profile σ as described in parts 2 and 3 of the proof of Theorem

3 and recall that σ is consistent with β1 = 1
1+v1

and β2 = 1 and induces an expected

payoff of φ − ĉ to the SO. Consider a 3-level scheme R in which a1 = a2 = a3 = xφ.

Under σ, the first entrant obtains an analogy-based expected payoff of

β1

n∑
j=2

(xφ− ĉ)
j

+ β2
1β2

n−1∑
j=2

n∑
j′=j+1

xφ

jj′
+ β3

1β
2
2

n−2∑
j=2

n−1∑
j′=j+1

n∑
j′′=j′+1

xφ

jj′j′′
− φ− c (8)

and, conditional on purchasing a license, every agent who enters the game after pe-

riod 1 obtains less than (8). For a sufficiently large n (in particular, for n ≥ 25),

it is possible to choose a large φ and an x < 1 such that (8) equals 0, in which case,

σ is part of an ABEE of Γ(R) in which the SO makes a strictly positive expected payoff.

Proof of Proposition 2. In Theorem 3, it was shown that for n > n? and q = 0,

there exists a reward scheme R such that πABEE(R) = φ− ĉ >> 0. The fact that q > 0

does not change the optimality of the agents’ strategies w.r.t. their analogy-based

expectations in Γ(R) if we set b1 = b2 = 0. Thus, as long as B ≥ φ, φ − ĉ is a lower

bound for the SO’s expected payoff in a profit-maximizing scheme.

Consider a scheme R′ such that φ′ = 0. Note that the SO’s expected payoff in an

ABEE of Γ(R′) cannot exceed qn, which is his expected revenue in an ABEE in which

all agents purchase licenses. Clearly, for a sufficiently small q, qn < φ− ĉ.
Consider an IC scheme R̃ such that φ̃ > 0, ã1 ≥ 0, and a2 = a3 = ... = 0, and an

ABEE (σ, β) of Γ(R̃). If agents do not purchase licenses in this ABEE, then, again,

the SO’s expected payoff cannot exceed qn. Assume that agents do purchase licenses

and denote by k1 the last period in which an agent does so.

If ã1 ≥ ĉ, then, conditional on purchasing a license, every agent makes an offer to

every agent he meets. Hence, as shown in the previous proofs, β1 ≤ 1
1+vk1

. Since R̃ is

IC, agent ik1 ’s analogy-based expected payoff in this case cannot exceed

φ̃
vk1

1 + vk1
+ q

n− k1

k1 + 1
− φ̃− c, (9)

where n−k1
k1+1

is the expected number of agents in the subtree of G rooted at ik1 . If q

is sufficiently small, then (9) is strictly negative, in contradiction to the optimality of
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ik1 ’s strategy.

To complete the proof, let a1 < ĉ. Conditional on purchasing a license, agent it’s

expected payoff cannot exceed q n−k1
k+1+1

− φ̃ − c < 0, in contradiction to the existence

of an ABEE in which he purchases a license if q is sufficiently small. In conclusion,

for a sufficiently small q, the SO’s expected payoff given a scheme that charges φ = 0

and/or pays a2 = a3 = ... = 0 is smaller than φ− ĉ, the lower bound for his expected

payoff in a profit-maximizing scheme.

Proof of Proposition 3. Let (Rn)∞n=1 be a sequence of IC schemes such that each

Rn is profit-maximizing when there are n agents. For each n ∈ N, let (σn, βn) be an

ABEE of Γ (Rn) that induces an expected profit of πABEE (Rn), where βn = (βn1 , β
n
2 ).

We use kn1 to denote the last period in which the agents accept offers and kn2 to denote

the last period in which distributors make offers in σn. Without loss of generality, we

restrict attention to schemes that charge ηn = 1.

Throughout the proof, we use several technical results on random trees and perform

several related calculations, all of which can be found in the Supplemental Appendix.

Step 1: Lower bounds. There exists a constant γ < 1 and an integer n′ such that,

for every n > n′, it holds that πABEE (Rn) > γn, kn1 > γn, and kn2 > γn. This step is

proven in Technical Lemmata 3 and 4 in the Supplemental Appendix.

Step 2: The dual problem. The profit-maximizing scheme must minimize the SO’s

expected net cost among the class of IC schemes that charge φn and in which σn is

part of an ABEE of their induced game. This problem can be written as

mina1,...,aτ? ,b1,...,bτ?
∑τ?

τ=1(aτκ(aτ ) + bτκ(bτ )) (10)

s.t. (ik1)
∑τ?

τ=1[aτw(aτ ) + bτw(bτ )]− ĉw(a1) ≥ c+ φ

(ik2)
∑τ?

τ=1[aτ ŵ(aτ ) + bτ ŵ(bτ )] ≥ ĉ

(IC) a1, a2, ... ≤ φn and b1, b2, ... ≤ 1,

where w(z) is the marginal increase in ik1 ’s willingness to pay for a license due to the

commission z ∈ {a1, b1, ..., aτ? , bτ?}, ŵ(z) is the corresponding increase in the distribu-

tors’ benefit from recruiting agent ik2 , and κ(z) is the increase in the SO’s cost that is

associated with z.

The SO’s costs. The SO pays aτ for every distributor j such that d(SO, j) > τ .
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The expected number of such distributors is

κ(aτ ) =
∑
G′∈Gn

∑
j∈G′

1 (d (SO, j) > τ)

min{kn1 , kn2 }!
, (11)

where Gn is the set of rooted trees withmin{kn1 +1, kn2 +1} nodes, and 1 (d (SO, j) > τ) ∈
{0, 1} is an indicator that equals 1 if and only if d (SO, j) > τ . The SO pays

bτ for every sale made by a distributor j such that d(SO, j) ≥ τ . Thus, κ(bτ ) =

qκ(aτ ) + qκ(aτ−1)vmin{kn1 ,kn2 } for τ > 1.

Constraint ik1 . The LHS is agent ikn1 ’s willingness to pay for a license. If kn1 ≥ kn2 ,

then w(b1) = qvkn1 and w(z) = 0 for any other commission z ∈ {a1, ..., aτ? , b2, ..., bτ?} as

ikn1 does not expect to make offers in equilibrium. If kn1 < kn2 , then, for τ > 1, it holds

that w(aτ ) = (βn1 )τ (βn2 )τ−1
∑kn2

j=kn1 +1
lj,τ−1

j
and w(bτ ) = q(βn1 )τ−1(βn2 )τ−2

∑kn2
j=kn1 +1

lj,τ−1

j
,

where lj,τ is the expected number of agents in the τ -th level of the subtree of G rooted

at the j-th entrant. For τ = 1, w(b1) = qvk1 and w(a1) = βn1
∑kn2

j=kn1 +1
1
j
. Note that

ĉw(a1) is ikn1 ’s expected cost of training new recruits.

Constraint ik2 . The LHS is the increase in the expected reward of a distribu-

tor who recruits ik2 . Clearly, ŵ(b1) = 0 and ŵ(a1) = 1. If τ > 1, then ŵ(aτ ) =

(β1β2)τ−1lkn2 ,τ−1 and ŵ(bτ ) = q(β1β2)τ−2lkn2 ,τ−1.

Step 3: The profit-maximizing scheme is a 2-level scheme. In the Supplemental

Appendix (see inequalities (23), (24), and (25)) we use results on random trees to show

that, if n is sufficiently large, then, for any z ∈ {a1, b2} and z′ ∈ {a3, b3, ..., aτ? , bτ?}, it

holds that w(z)
κ(z)
≥ w(z′)

κ(z′)
and ŵ(z)

κ(z)
≥ ŵ(z′)

κ(z′)
with at least one strict inequality. Because of

the linearity of (10) in w, ŵ, and κ, it follows that if z′ > 0 and z′ ∈ {a3, a4, ..., aτ?},
then a1 = φ and b2 = 1. If this is the case, then the SO’s expected profit cannot exceed∑n

t=1
B+1
t

+
∑n−1

t=1

∑n
j=t+1

1
tj

, as the SO earns (at most) 1 + B from every agent he

meets and 1 from every agent who meets these agents. The latter expression is smaller

than γn for a sufficiently large n, in contradiction to the result obtained in Step 1.

Step 4: For a sufficiently large n, it holds that φ = 0 at the optimum. Consider

an IC scheme R that charges φ > 0. There are two cases to consider, (1) a1 ≥ c and

(2) a1 < c. Consider the first case and note that a1 ≥ c implies that a distributor

who meets an agent finds it optimal to make an offer to the latter. Thus, kn2 = n. As

a result, ŵ(a2) = ŵ(a1) = ŵ(b1) = 0 < ŵ(a1) = 1. As shown in the Supplemental

Appendix (inequality (23)), w(a1)
κ(a1)

> w(b1)
κ(b1)

> w(a2)
κ(a2)

> w(b2)
κ(b2)

. Hence, if a2 > 0 or b2 > 0,

then a1 = φ and b1 = 1, which implies that the SO’s expected profit cannot exceed
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∑n
t=1

B+q
t

(i.e., the expected revenue from his sales and recruitments). For a sufficiently

large n, the latter expression is smaller than the lower bound γn established in Step 1.

It follows that if our scheme is profit-maximizing, then a2 = b2 = 0.

At the optimum, agent ik1 must be indifferent whether to purcahse a license as,

otherwise, it would be possible to increase φ without changing the agents’ equilibrium

behavior. Thus, b1qvk1 + (a1 − ĉ)w(a1) = φ+ c, or b1 = φ+c−(a1−ĉ)w(a1)
qvk1

.

We now show that R is not profit-maximizing by introducing a different scheme,

R′, such that πABEE(R′) > πABEE(R). Let R′ be a 2-level scheme such that a′1 = a′2 =

φ′ = 0, b′1 = c
vkn1

, and b′2 = ĉ
qvkn1

. It is possible to verify that there exists an ABEE of

Γ(R) in which agents (resp., distributors) accept (resp., make) offers in periods 1, ..., kn1

and reject (resp., do not make) offers in periods kn2 + 1, ..., n. The SO’s revenue from

the agents’ sales in this ABEE is identical to his revenue from the agents’ sales in the

ABEE of Γ(R) as the same agents purchase licenses in both ABEEs. We now show that

the expected net transfers (i.e., including the license fee) from the SO to the agents

under R are higher than under R′.

In the transition from R to R′ the SO’s profit is lowered by φk1 since there is

no fee under R′. The change from b1 to b′1 increases the SO’s expected payoff by
φ+(a1−ĉ)w(a1)

qvkn1
κ(b1), the reduction in a1 increases the SO’s expected payoff by a1κ(a1),

and the addition to b2 decreases the SO’s expected payoff by ĉ
qvkn1

κ(b2). Overall, the

SO’s expected payoff increases in the transition from R to R′ if

−φkn1 +
φ− (a1 − ĉ)w(a1)

qvkn1
κ(b1) + a1κ(a1)− ĉ

qvkn1
κ(b2) > 0.

Plugging κ(b1), κ(b2), and w(a1) and manipulating yields

φκ(a1)

vkn1
− (a1 − ĉ)

(κ(a1) + vkn1 k
n
1 )

1 + vkn1
+ (a1 − ĉ)κ(a1)− ĉκ(a2)

vkn1
> 0.

By incentive compatibility, φ ≥ a1 and, by assumption, a1 ≥ ĉ. Since kn1 > γn for large

n, it follows that vkn1 is bounded from above for all n. Note that kn1 − κ(a1) is equal

to the kn1 -th harmonic number, hkn1 as it is equal to the expected number of nodes in

first level of a random recursive tree. Note that κ(a1)−κ(a2) >
(hkn1

)2

2
− 2 as it is equal

to the expected number of nodes in the second level of a random recursive tree. Thus,

for a sufficiently large n the above inequality holds, and so R is not profit-maximizing.

We can conclude that a scheme is profit-maximizing and IC only if it charges φ = 0.
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Incentive compatibility implies that a1 = a2 = ... = 0 as well.

The proof for the case of a1 < ĉ is similar (for any IC scheme that charges φ > 0,

the transition to the scheme R′ increases the SO’s expected payoff) and, therefore, it

is omitted.

Proof of Proposition 4. Assume that agents are fully rational. As we showed

in Theorem 1, there are three possible cases. In the first, there exists an IC profit-

maximizing 2-level scheme R̃ in which η̃ = 1, ã1 = ã2 = φ̃ = 0, b̃1 = c
qvk1

, and b̃2 = ĉ
vk2

,

where k1 ∈ {1, ..., n} and k2 ∈ {1, ..., k1}. In the second, there exists an IC profit-

maximizing 1-level scheme R̃ in which η̃ = 1, ã1 = φ̃ = 0, b̃1 = c
qvk1

, and k1 ∈ {1, ..., n}.
In the third, the SO does not recruit at the optimum and the proof is immediate.

Consider the first case. By Lemma 1, in a PBE of Γ(R̃), every agent who receives

an offer up to period k1 accepts it and every agent who receives an offer afterward

rejects it. Moreover, every distributor who meets an agent up to period k2 makes an

offer to the latter and every distributor who meets an agent after period k2 does not

make him an offer. We now show that this behavior is part of an ABEE of Γ(R̃), which

implies that πABEE(R̃) ≥ πPBE(R).

In an ABEE of Γ(R̃), a distributor who recruits agent it increases his (analogy-

based) expected payoff by qvtb̃2 − ĉ. Hence, every distributor who meets an agent up

to period k2 makes an offer to the latter and every distributor who meets an agent after

period k2 does not make him an offer. As a result, an agent who purchases a license

in period t ≥ k2 does not expect to make offers, and so, conditional on purchasing a

license, he analogy-based expects a payoff of qvtb̃1− c. Hence, ik1 is indifferent whether

to purchase a license or not. Since vt is decreasing in t, agents who enter the game after

ik1 reject every offer in our ABEE, and, because it is possible to refrain from making

offers, agents who enter the game prior to k1 accept every offer.

The proof of the second case follows the same logic and is omitted for brevity.

Proof of Proposition 5. In a symmetric equilibrium, either all of the agents accept

every offer or none of the agents accept any offer. To see this, note that an agent i

accepts an offer only if there is at least one agent j ∈ I − {i} such that σj(i) = 1.

By symmetry, σj(i) = 1 implies that σk(i) = 1 for every k ∈ I − {i, j}. Finally, since

the likelihood of meeting new entrants goes down over time, if agents accept every

offer they receive from other agents, pt(s−i, j) is decreasing in t for every i ∈ I and

j ∈ I ∪ {SO}. As a result,
∑n

t=1 PRi(t|SO)pt(s−i, SO) ≥
∑n

t=1 PRi(t|j)pt(s−i, j) for
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every i ∈ I and j ∈ I − {i}. Hence, σj(i) = 1 implies that σj(SO) = 1.

In an equilibrium (si)i∈I in which agents accept offers, it must be that ri(2|j) = 1

and ri(1|SO) = 1 for every i ∈ I and j ∈ I −{i}. To see this, note that since pt(s−i, j)

is decreasing in t, these beliefs maximize (2) conditional on purchasing a license and

the requirement that ri(t|j) = 0 whenever PRi(t|j) = 0. Furthermore, under these

beliefs, (3) is greater than (2) such that the corresponding requirement is satisfied.

We can conclude that an equilibrium in which agents accept offers exists only if (2)

is positive for every i ∈ I and j ∈ I ∪ {SO} given subjective beliefs ri(2|j) = 1 and

ri(1|SO) = 1. Since pt(s−i, j) is decreasing in t, an equilibrium in which agents accept

offers exists if and only if (2) is positive when an agent receives an offer from another

agent j ∈ I and all agents accept every offer, i.e.,

(1− ψ)
n∑
t=1

PRi(t|j)pt(s−i, j) + ψp2(s−i, j)− φ− c ≥ 0. (12)

Consider an IC 1-level scheme R. If all of the other agents accept every offer,

pt(s−i, j) = vta1. Thus, πBP (R) > 0 if and only if

(1− ψ)
n∑
t=1

t− 1

t(n− 1− v1)
vta1 + ψv2a1 − φ− c ≥ 0. (13)

Since the harmonic sum diverges and (13) is continuous and increasing in ψ, if n is

sufficiently large, then there is a cutoff ψ < 1 such that an equilibrium in which agents

accept offers exists if and only if ψ ≥ ψ. Hence, a cutoff ψ??(n) exists.

We now show that if n is sufficiently large and ψ ≥ ψ??(n), then 1-level schemes are

not profit-maximizing. Let R be an IC 1-level scheme such that πBP (R) > 0. Let R′

be a 2-level scheme in which φ′ = φ and a′1 = a′2 = 0.5a1. Under both R′ and R, when

an agent j is recruited the SO pays a1 if d(SO, j) > 2. If d(SO, j) = 2, then under R′,

the SO pays 0.5a1, while under R the SO pays a1. Hence, if there is an equilibrium of

Γ(R′) in which agents purchase licenses, then πBP (R′) > πBP (R). Such an equilibrium

exists if and only if

(1− ψ)a1

2

n−1∑
t=1

t− 1

t(n− 1− v1)
(vt +

n∑
k=t+1

vk
k

) +
ψa1

2
[v2 +

n−1∑
t=3

vt
t

]− φ− c ≥ 0. (14)

If a1 ≤ φ and (13) is positive, then (14) is strictly greater than (13). This has two

implications. First, 1-level schemes are never profit-maximizing. Second, since (14)
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is continuous in ψ, there exists ψ < ψ??(n) such that the SO can sustain a pyramid

scam by means of a 2-level scheme. The existence of a cutoff ψ?(n) < ψ??(n) such that

the SO can sustain a pyramid scam if and only if φ ≥ ψ?(n) follows from (12) being

increasing and continuous in ψ given optimal beliefs.

Proof of Proposition 6. Consider an IC 1-level scheme R. An agent of type l1

believes that all other agents are of type l0 and expects them to accept each offer with

probability α0. Since R is IC, a1 ≤ φ. Note that φ ≤ B and α0 ≤ ĉ
B

. Thus, the l1

agent believes that if he purchases a license, he will pay c + φ and earn an expected

net payoff of a1α0 − ĉ ≤ 0 from every offer he makes in the future. Clearly, the agent

does not find it optimal to purchase a license. To complete the first part of the proof,

note that if agents of type lz do not purchase licenses, then agents of type lz+1 do not

believe that they can sell licenses and, therefore, they do not purchase licenses either.

Consider an IC 2-level scheme R in which a1 = a2 = 0.5φ = 0.5B. Agents of type

l1 who purchase a license in period t and make offers to every agent they meet up to

period k > t expect a payoff of

k∑
j=t+1

1

j
(α0a1 + α0a2

n∑
j′=j+1

α1α0

j′
− ĉ)− c− φ. (15)

Since the harmonic sum diverges, if n is sufficiently large, there is a period τ1(n) such

that all agents of type l1 accept every offer made in periods 1, ..., τ1(n) and reject

every offer made afterward. Moreover, there is a period t > τ1(n) such that every l1

distributor makes an offer to every agent he meets up to period t. Furthermore, (15)

implies that τ1(n) is monotone in n and goes to infinity when n goes to infinity.

Now suppose that all agents of type lz accept every offer in periods 1, ..., τz(n) and

make an offer to every agent they meet in these periods. Moreover, suppose that τz(n)

is monotone in n and goes to infinity when n goes to infinity. The argument above

(replacing n with τz(n), α0 with 1, and α1 with 1) shows that if n is sufficiently large,

then there is a period τz+1(n) < τz(n) such that all agents of type lz+1 accept every

offer in periods 1, ..., τz+1(n) and, conditional on accepting an offer, make an offer to

every agent they meet in these periods. Moreover, τz+1(n) is monotone in τz(n) and

goes to infinity when τz(n) goes to infinity. Hence, for a sufficiently large n, agents of

all cognitive types purchase licenses in Γ(R).
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Supplemental Appendix

This appendix includes three sections. In Section B.1, we study different models of

social networks and show that the main results of the paper hold. We start with a

model in which the network is deterministic and then study a network formation model

with an infinite horizon. In Section B.2 we provide additional results that support

several claims made in the text. In Section B.3 we provide technical results that are

required for the proof of Proposition 3 and complete its proof.

B.1 Modifying the Social Network

B.1.1 Deterministic social networks

Throughout the analysis, we assumed that each agent is connected to a single agent

upstream and that agents are symmetric in their chances of meeting new entrants. A

natural question is whether the key insights and results apply when the social network

is not a tree and individuals know how many friends they have. In this section, we

relax the above assumptions and revisit the setting of Section 4.2, in which we studied

pure pyramid scams (q = 0).

We examine a model in which the network is deterministic and interpret links as

friendships. It is assumed that agents can recruit (only) their direct friends. We

first analyze an environment in which the network structure is commonly known and

then discuss the case in which agents know only their direct friends and extrapolate

from summary statistics about the network. In both cases, we shall assume that

agents know the probability with which other agents accept offers but neglect the

correlation between this probability and the number of friends their friends have (and

their position in the network). This correlation neglect leads to two biases. First, agents

only partially take into account that their popular friends are likely to have already

been sold a distributorship already. Second, agents do not take into account that their

more reserved friends are unlikely to find it beneficial to purchase a distributorship.

We start by adapting the baseline model. To simplify the analysis, we set ĉ = 0.

Thus, agents always find it optimal to make offers to all their friends. Let g be a

connected social network with n + 1 nodes representing the SO and n agents. A link

between i and j is denoted by gij = 1 and the absence of such a link by gij = 0. Let

Nj = {i ∈ I|gji = 1} represent j’s friends and assume that friendship is reciprocal,

that is, gij = 1 if and only if gji = 1.
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The timeline in the model is as follows. In period t = 1, the SO makes an offer to

every agent j ∈ NSO. An agent j who receives an offer in period 1 can accept or reject

it. For any t ≥ 1, let Dt be the set of agents who accepted an offer in period t. In

period t > 1, every agent i ∈ Dt−1 makes an offer to every agent j ∈ Ni from whom i

did not receive an offer up to that point. An agent who receives offers in period t can

accept at most one of them or reject all of them, unless he accepted an offer prior to t,

in which case he must reject all of the offers received at t. The game ends in the first

period t at which no offer is made, i.e., after at most n periods. Agents who purchase

a license are paid according to a reward scheme as in the baseline model.

For every period t and agent i, we denote by zit the set of players who made an

offer to i in period t and let ẑit ∈ {0, 1} be an indicator that equals 1 if i accepted an

offer in period t and 0 otherwise. A private history of length t for agent i is a sequence

(zi1, ẑ
i
1, z

i
2, ẑ

i
2, ..., z

i
t−1, ẑ

i
t−1, z

i
t), where

∑t
j=1 ẑ

i
t ∈ {0, 1} and ∩tj=1z

i
j = ∅. Let H t

i be the

set of length-t private histories that satisfy
∑t−1

j=1 ẑ
i
t = 0 and zit 6= ∅. Let Hi = ∪nt=1H

i
t .

Agent i’s strategy σi : Hi → Ni specifies (at most) one offer that i accepts as a function

of his private history.

Denote the proportion of accepted offers by β̂ and observe that

β̂ =

∑n
t=1 |Dt|

NSO +
∑n

t=1

∑
j∈Dt |Nj − zj1 − ...− z

j
t |
. (16)

Note that the formula for β̂ may include offers that are rejected for different reasons:

offers that are rejected because the agent does not want to purchase a license and offers

that are rejected by agents who already bought a license.

We say that an agent’s strategy is a best response to β̂ if the strategy is optimal

given a belief that every other agent who receives an offer accepts it with probability

β̂, unless the agent already accepted another offer previously (or accepts another offer

made simultaneously), in which case, he rejects the offer. A pair (σ, β̂) is said to form

an ABEE if β̂ equals the proportion of offers accepted to offers made induced by σ,

and each agent i’s strategy is a best response to β̂.

The next result establishes that there exists no IC 1-level scheme R such that

πABEE(R) > 0 regardless of the network structure.

Proposition 7 For any social network, there exists no IC 1-level scheme R in which

πABEE(R) > 0.

Proof. Let g be an arbitrary network. Assume to the contrary that there exists an IC
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1-level scheme R such that πABEE(R) > 0 and consider an ABEE (σ, β̂) of Γ(R). Let

J 6= ∅ be the set of agents who accept offers in this ABEE and, for each j ∈ J , denote

by xj the number of offers j makes in the subsequent period. Let x? = min{xj|j ∈ J}
and note that (16) implies that β̂ < 1

x?
. Thus, an agent who makes x? offers analogy-

based expects to recruit less than x? 1
x?

agents, and so analogy-based expects a payoff

strictly smaller than a1x
? 1
x?
− c− φ. If R is IC, then a1 ≤ φ, and so our agent finds it

strictly suboptimal to purchase a license. Hence, J = ∅, in contradiction to J 6= ∅.
The next example illustrates that if n = 7, then there exist a network structure

and an IC reward scheme such that the SO makes a strictly positive expected payoff

in their induced game. Note that the network’s skeleton is essentially a tree in this

example. For larger values of n it is easy to find examples in which a pyramid scam is

sustained on a non-tree network. However, this example is chosen since it is relatively

simple.

Example 2 Let I = {1, ..., 7} and gSO1 = g12 = g2i = 1 for every i ∈ {3, 4, 5, 6, 7}
and assume that there are no additional links. Consider a profile of strategies in which

agent 1 accepts the SO’s offer and makes an offer to agent 2 who rejects agent 1’s offer.

Under this profile, β̂ = 1
2
. Conditional on purchasing a license, agent 1 analogy-based

expects a payoff of β̂(a1 + 5β̂a2)− φ− c and agent 2 analogy-based expects a payoff of

5β̂a1−φ− c. Thus, we can choose φ > 0 so that an IC reward scheme that pays a1 = 0

and a2 = φ can support this profile as an ABEE in which the SO makes a profit of φ.

In the above ABEE, agent 1 purchases a license although he has only one friend. If

the SO were to use an IC 1-level scheme, the agent would never buy a license because

it would be impossible for him to recruit more than one agent. However, given a 2-level

scheme, agent 1 may purchase a license since he falsely expects to benefit from the fact

that his friend, agent 2, has many friends.

Agent 1’s overestimation of the number of downline recruits is greater than his

overestimation of the number of people he recruits. In equilibrium, agent 1 does not

recruit anyone. However, he falsely expects to recruit 0.5 agents and to have 1.25

downline recruits. This effect occurs when there are agents with significantly more

“friends of friends” than friends.

We can embed Example 2 in a larger market to obtain the next result.

Proposition 8 If n ≥ 7, then there exists a network and an IC 2-level scheme R

where πABEE(R) > 0.
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Comment: Extrapolating from partial information about the network structure

The above analysis assumes that agents know the network structure. Let us relax

this assumption and assume instead that each agent i knows his friends (i.e., each agent

i knows Ni) but does not know the rest of the network. We shall assume that i knows

only some summary statistics about the the network.

Before proceeding, it is worth pointing out that, if we maintain the assumption

that agents best respond to a belief that their friends accept offers with the average

probability β̂, then the impossibility result of Proposition 7 holds. The reason for this

is that the proposition does not rely on any assumption about the network structure

or the agents’ knowledge of it.

We now assume that each agent i knows the degree distribution in the network.

An agent i who naively extrapolates from this distribution may expect to have |Ni| ˆdeg

friends of friends, where ˆdeg =
∑
i∈I∪{SO} |Ni|

n+1
. Thus, if agent i thinks that every other

agent accepts offers with probability β̂, conditional on purchasing a license after re-

ceiving offers from z of his friends, the agent would expect a payoff of

β̂(|Ni| − z)a1 + β̂2(|Ni| − z)( ˆdeg − 1)a2 − φ− c (17)

in a 2-level scheme. Note that our agent neglects the possibility that other agents

already hold a license (with the exception of agents who made him an offer up to

that point in the game). The following example establishes that there are network

structures that enable the SO to sustain a pyramid scam by means of a 2-level scheme

when agents extrapolate naively as described above.

Example 3 Suppose that there are two cliques of agents, Q1 and Q2 (i.e., gij = 1 for

every pair of agents i, j ∈ Q ∈ {Q1, Q2}). Moreover, suppose that gSO,i = 1 for every

i ∈ Q1 and gSO,i = 0 for every i 6∈ Q1. Furthermore, suppose that there are two agents

z1, z2 6∈ Q1 ∪Q2 such that for every i ∈ Q1 and j ∈ Q2 it holds that gz1i = 1, gz2i = 0,

gz2i = 0, and gz2j = 1. Finally, let gz1z2 = 1. Denote x = |Q1| and y = |Q2| and

observe that ˆdeg = 3x+x2+2+y+y2

3+x+y
.

Consider a profile of strategies in which all of the offers made by the SO are accepted

and, in period 2, every offer is rejected. Under this profile, β̂ = 1
1+x

. Thus, (17) becomes
x
x+1

a1+ x
(x+1)2

3x+x2+2+y+y2

3+x+y
a2−φ for every j ∈ Q1 and 1

x+1
a1+ 1

(x+1)2
3x+x2+2+y+y2

3+x+y
a2−c−φ

for z1. Clearly, the former expression is strictly greater than the latter one. Let a1 =

a2 = mφ. For every x there exists a range of y values and m < 0.5 values such that
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the former expression is positive and the latter one is negative and, as a result, the

profile described above is an equilibrium. Note that in this equilibrium, the SO makes

an expected payoff of xφ > 0.

In the equilibrium that is described above, each j ∈ Q1 neglects the possibility that

his friends have already received an offer. As a result, the agent expects to recruit

some of them, failing to realize that it is too late to recruit the rest of the members of

Q1 and that all of these members are going to compete to recruit agent z1.

Like agent 1 in Example 2, the members of Q1 believe that they have more friends

of friends than friends. In an ABEE in which they accept offers, they expect to recruit

no more than one person. Still they find it beneficial to purchase a license as they

believe that the people they will recruit are likely to recruit many new members (when

y is large).

B.1.2 Infinite horizon

Our main objective in this section is to show that the paper’s main insights do not

depend on the finiteness of the game. We shall focus on Theorems 1–3 and show that

similar results hold when there is uncertainty about the length of the game.

Let us relax the assumption that the game has a fixed number of periods and

assume instead that, for each period t ∈ N, conditional on the game reaching period

t ∈ N, there is a probability of δ < 1 that the game continues and a probability of

1 − δ that it terminates in period t. Note that we can no longer assume that the set

of agents is finite. We shall assume that the set of potential entrants is I = [0, 1] and

that, in each period t ∈ N, nature draws one agent i ∈ I to enter the game uniformly at

random. In order to ease the exposition, we shall assume that each agent i’s strategy

σi : N → {0, 1} × {0, 1} is a mapping from time to two decisions: whether or not to

purchase a license and whether or not to make an offer.

For each t ∈ N, the average probability that agents accept an offer in period t is

σ̄t :=
∫
j∈I σj (t) dj, where σj (t) = 0 (resp., σj (t) = 1) if j rejects (resp., accepts) offers

he receives in period t. Let rσ (t) be the objective probability that the t-th entrant

receives an offer to purchase a license given the profile σ. We shall say that β1 is

consistent with σ if β1 =
∑∞

t=1 rσ (t) σ̄t whenever rσ (t) > 0 for some t ∈ N. The

consistency of β2 is defined in an analogous manner. As in the main text, an ABEE

is a pair of profiles (σ, β) such that the agents’ analogy-based expectations, β1 and β2,
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are consistent with σ and each agent’s strategy is optimal with respect to β1 and β2.

The rest of the modeling assumptions remain as in the main text.

Propositions 9–11 are analogous to Theorems 1–3. The proofs of these results are

similar to the proofs of the results in the main text except for two main differences.

First, the expression for it’s expected number of direct successors, vt, changes to

vt =
∞∑
j=1

δj

j + t
. (18)

Second, since the number of periods is not finite, we need to show that there is a

period t? ∈ N such that in every game that is induced by an IC scheme, from period t?

onward, rejecting every offer to purchase a license is the unique best response of each

agent i ∈ I (regardless of his beliefs about the other agents’ behavior). This technical

result will allow us to treat the game as one with a finite number of periods.

Lemma 2 There exists a period t? such that for every t > t? and every IC reward

scheme R, every agent who receives an offer in period t finds it suboptimal to accept it

regardless of his beliefs about the other agents’ strategies.

Proof. Consider an agent it. In expectation, he will have

St =
∞∑

j=t+1

δj−t

j
+

∞∑
j=t+1

∞∑
j′=j+1

δj
′−t

jj′
+

∞∑
j=t+1

∞∑
j′=j+1

∞∑
j′′=j+1

δj
′′−t

jj′j′′
+ ... =

δ

(t+ 1)(1− δ)

successors in G. In an IC scheme, for each of his successors that purchases a license, it

obtains a commission of (at most) φ, and, for each of his successors that purchases the

good, it obtains a commission of (at most) 1. Hence, it’s expected payoff conditional

on purchasing a license is bounded from above by St(φ + 1) − φ − c. Clearly, there

exists t? such that for every t > t? it holds that St(φ+ 1)− φ− c < 0.

Fully rational agents

We start with the benchmark result of Section 3. Again, to avoid trivial cases in which

the SO does not recruit distributors at the optimum (in which case, all schemes are

profit-maximizing), we assume that δ is large. First, note that the proof of Lemma 1

holds as is (with vt defined as in (18)). Thus, the commissions a2, a3, ..., b3, b4, ... have

no effect on the agents’ equilibrium behavior and using them can only lower the SO’s
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expected payoff. The proof of Theorem 1 holds as well, where the assumption that δ

is large guarantees that k1 ≥ 2. The following proposition concludes this discussion.

Proposition 9 Fix q > 0. There exists δ? such that if δ > δ? and R is IC and

profit-maximizing, then φ = a1 = 0.

Analogy-based reasoners

We now consider the main results of Section 4.2. We start with the impossibility result

of Theorem 2.

Proposition 10 Let q = 0. There exists no IC 1-level scheme R such that πABEE (R) >

0.

Proof. Consider an IC 1-level scheme R. If a1 ≤ ĉ, then, conditional on purchasing

a license, an agent makes an expected payoff of at most −c− φ < 0. Hence, no agent

purchases a license in an ABEE of Γ(R).

Suppose that a1 ≥ ĉ and consider an ABEE of Γ(R) in which the SO makes offers.

By Lemma 2, there is a period t? such that, for every t > t?, regardless of agent

it’s beliefs about the other agents’ strategies, it is suboptimal for him to purchase

a license. Consider a period t ∈ {1, ..., t?} such that agents reject every offer made

after period t. Since a1 ≥ ĉ, every agent who holds a license at the end of period t

makes, in expectation, vt offers after period t. Thus, for every offer that is accepted in

periods 1, ..., t there are, in expectation, at least δtvt rejected offers after period t, and

so the proportion of accepted offers, β1, cannot exceed 1
1+δtvt

. Hence, conditional on

accepting an offer, agent it makes an analogy-based expected payoff of no more than
vt

1+δtvt
(a1 − ĉ) − c − φ. Since R is IC, a1 ≤ φ, and so it’s expected payoff conditional

on purchasing a license is strictly negative. Thus, in our ABEE, it does not purchase

a license. By induction, no agent ever purchases a license in our ABEE. Since q = 0

no agent ever buys the good. It follows that πABEE(R) = 0.

The next result corresponds to the possibility result of Theorem 3.

Proposition 11 Fix q = 0. There exists a number δ? < 1 such that for every δ > δ?

there exists an IC 2-level scheme R such that πABEE (R) > 0.

Proof. Consider a profile of strategies σ in which (i) every agent accepts an offer if

he receives one in period 1 and rejects every offer he receives after period 1, (ii) every

51



distributor makes an offer to every agent he meets, and (iii) the SO makes an offer only

to agents he meets in period 1. The analogy-based expectations that are consistent

with this profile are β1 = 1
1+v1

and β2 = 1. Given this profile, the SO’s expected payoff

is φ− ĉ.
Consider a 2-level scheme R such that a1 = a2 = xφ > 0. If x ≤ 1, it is IC. Given

σ, the first entrant’s perceived expected payoff is

β1

∞∑
i=1

δi

1 + i
(a1 − ĉ) + β1β2

∞∑
i=1

∞∑
i′=i+1

δi
′

(1 + i) (1 + i′)
a2 − φ− c. (19)

For a sufficiently large δ < 1, the above expression is arbitrarily close to a1 − ĉ +

0.5a2 − φ − c = 0.5xφ − c − ĉ. Thus, it is possible to set x < 1 and φ > ĉ such that

(σ, β) is an ABEE of Γ(R) in which the SO makes a strictly positive expected payoff.

B.2 Additional Results

B.2.1 The SO uses at least two distributors when qv4 > c+ ĉ

Proposition 12 If v4 >
c+ĉ
q

and R is a profit-maximizing scheme, then in every PBE

of its induced game at least two agents purchase a license.

Proof. If no agent purchases a license in Γ(R), then the SO’s expected payoff is

q + v1q. If only one agent it purchases a license, then the SO’s expected payoff is

q+ v1q+ 1
t
[φ− ĉ+ qvt(1− b1)]. As Lemma 1 shows, b1 ≥ c+φ

qvt
. Thus, the SO’s expected

payoff cannot exceed q+ 2qv1− c− ĉ. Consider a scheme R′ that pays b′1 = c
v2

, b2 = ĉ
v2

,

a′1 = a′2 = ... = b′3 = ... = 0, and charges η′ = 1 and φ′ = 0. By our assumption on c, ĉ,

and q, R′ is IC. By Lemma 1, in a PBE of Γ(R′) the first two entrants purchase a license

(and only these agents purchase a license). In this PBE, the SO’s expected payoff is

q+ 2qv1 + qv2−2c−2ĉ−0.5q( c
qv2

), which is greater than max{q+v1q, q+ 2qv1− c− ĉ}
if and only if

qv2 − c− ĉ− c
1

2v2

> 0.

By our assumption on n, qv4 ≥ c + ĉ > c. Thus, the above inequality holds if q(1
3

+
1
4
) − qv4

2v2
> 0, which holds for n ≥ 4. We can conclude that in a PBE in which one

agent purchases a license the SO’s expected payoff is not maximized regardless of the

52



scheme that is used. Thus, at the optimum, at least two agents purchase a license in

a PBE. By Lemma 1, agents behave in the same way in all PBEs.

B.2.2 Profit-maximizing schemes are not socially optimal

We start by assuming that agents are fully rational and then turn to the case where

agents are analogy-based reasoners. In both cases, if nq is sufficiently large, then

profit-maximizing schemes are not socially optimal.

Proposition 13 Suppose that agents are fully rational. There exists a number n′ such

that if nq > n′, then there exists no IC scheme that is both profit-maximizing and

socially optimal.

Proof. Let k = max{t|c+ ĉ < qvt} and assume to the contrary that R is IC, socially

optimal, and profit-maximizing. Being socially optimal, R must incentivize the first

k entrants to purchase a license, and must incentivize distributors to make offers to

every agent they meet in periods {1, ..., k}. By Theorem 1, R being profit-maximizing

implies that φ = 0 = a1. By Lemma 1, R pays b1 ≥ c
qvk

and b2 ≥ ĉ
qvk

. Moreover, R

being profit-maximizing implies that η = 1, b1 = c
qvk

, and b2 = ĉ
qvk

as, otherwise, the

SO could increase η, lower b1, or lower b2, respectively, without affecting the agents’

equilibrium behavior.

Consider a scheme R′ in which b′1 = c
qvk−1

, b′2 = ĉ
qvk−1

, η′ = 1, and a1 = a2 = ... =

b3 = ... = φ = 0. Under R′, only the first k−1 agents purchase a license in equilibrium,

and so the SO’s expected revenue is lower by qvk than under R. The SO’s expected

cost is also lower under R′ as the commissions are lower and the number of distributors

is lower by 1. The expected reduction in the SO’s cost is at least

qvk(b1 + b2) + (k − 1)qvk−1(
c

qvk
− c

qvk−1

) = c+ ĉ+ c
(k − 1)

kvk
.

By definition, qvk+1 ≤ c + ĉ. Thus, the above expression is greater than qvk if
c
c+ĉ
≥ k

(k2−1)
. Note that k goes to infinity when n goes to infinity. Thus, if n is

sufficiently large, the SO’s expected profit increases in the transition from R to R′.

Moreover, if R is IC, then so is R′. We can conclude that R is not profit-maximizing.
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Proposition 14 Suppose that agents are analogy-based reasoners. There exists a

number n′′ such that if qn > n′′, then there exists no IC scheme that is both profit-

maximizing and socially optimal.

Proof. Let k = max{t|c+ ĉ < qvt} and assume to the contrary that R is IC, socially

optimal, and profit-maximizing. By Proposition 3, if n is sufficiently large, then R

being profit-maximizing implies that b3 = b4 = ... = a1 = a2 = ... = φ = 0. Being

socially optimal, R must incentivize the first k entrants to purchase a license, and must

incentivize distributors to make offers to every agent they meet in periods {1, ..., k}.
In such a profile, the k-th entrant does not expect to recruit anyone. Hence, qvk ≥ c

and, since b3 = b4 = ... = a1 = a2 = ... = φ = 0, a distributor who recruits the k-th

entrant does not expect to earn any rewards from the k-th entrant’s downline sales

and downline recruitments. Thus, qvk ≥ ĉ. Since R is profit-maximizing, qvk = ĉ and

qvk = c. We can now repeat the argument in the proof of Proposition 13 to show that

there exists a scheme R′ that induces a higher expected payoff than R for the SO.

Comment: Profit-maximizing schemes vs. socially optimal schemes when q is small

When agents are fully rational and q is small, profit-maximizing schemes and socially

optimal schemes coincide. However, when agents are analogy-based reasoners, this is

not necessarily the case. As shown in the proof of Proposition 2, when n > n? and q

is small, the profit-maximizing scheme incentivizes some of the agents to purchase a

license (in fact, most of the SO’s profit comes from the fees distributors pay). From

a social perspective, the optimal number of distributors is zero when q is sufficiently

small. Thus, when q is small and agents are analogy-based reasoners, profit-maximizing

schemes are not socially optimal because they incentivize too many agents to purchase

a license relative to the social optimum.

B.2.3 Time-contingent compensation

In this section, we examine the implications of making the rewards time-contingent. To

this end, suppose that the SO can use a sequence of schemes (Rt)nt=1 such that an agent

who purchases a license in period t is paid according to Rt. Denote the commissions

and fees in the time-t scheme with a superscript t. To account for the fact that an agent

who purchases a license in period t recruits new members after period t, we adapt the

incentive-compatibility constraint and say that a sequence of schemes is IC if atτ ≤ φt
′
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and btτ ≤ ηt
′

for every t′ > t and τ ≥ 1. Note that an IC sequence may include schemes

that are not IC. This observation will play a major role when we analyze the case where

agents are analogy-based reasoners.

B.2.3.1 Fully rational agents

Consider the baseline model of Section 3. Note that agents have correct expectations

on the equilibrium path of a PBE and that, being rational, no agent purchases a license

expecting a payoff smaller than 0. Thus, the SO’s expected payoff in a PBE cannot

exceed the total surplus at the social optimum (regardless of the scheme that is used).

In particular, unless n is small, in the baseline model of Section 3, the SO’s expected

payoff is strictly smaller than the total surplus as profit-maximizing schemes are not

socially optimal (Proposition 13).

Suppose that max{t|qvt ≥ c + ĉ} = k such that at the social optimum the first k

entrants purchase a license. We now show that there exists an IC sequence of schemes

that is socially optimal, namely, that in a PBE of its induced game the first k entrants

purchase a license and other agents do not purchase a license. We also show that in

this PBE, each agent obtains an expected payoff of 0. Thus, the SO’s expected payoff

in this PBE is equal to the total surplus at the social optimum.

Let bt1 = c
qvk

, bt2 = ĉ
qvk

, ηt = 1, and φt = vt−vk
qvk

c +
∑k

j=t+1
vj−vk
jvk

ĉ. We can apply

Lemma 1 to show that (i) the first k entrants find it optimal to purchase a license,

(ii) distributors find it optimal to recruit the first k entrants, and (iii) distributors do

not find it optimal to recruit agents after period k. It is easy to verify that, given this

behavior, every agent obtains an expected payoff of 0. Thus, the scheme is socially

optimal and the SO captures all the surplus by charging a license fee that goes down

over time.

B.2.3.2 Analogy-based reasoners

When agents are analogy-based reasoners the SO can benefit from charging a license

fee that goes up over time. As we shall see, this would allow him to make a strictly

positive profit in instances in which it would be impossible to do so when he is restricted

to using a single scheme. In particular, we shall show that when n = 2, the SO can

sustain a pyramid scam by means of an IC sequence of two 1-level schemes. The trick

here is that the first of the two schemes is not IC. Nonetheless, the increasing fee makes

the sequence IC and enables the SO to use it.
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To apply the behavioral model of Section 4.2, we shall assume that the time-

contingent nature of the rewards does not change the agents’ perception of other agents’

behavior, namely, the perception that other agents’ strategies are time-invariant.

Suppose that q = 0 and n = 2. Note that there exists no single IC scheme R in

which πABEE(R) > 0. The reason for this is that the second entrant cannot find it

profitable to purchase a license. Therefore, if i1 accepts the SO’s offer, then β1 ≤ 3
4

and i1’s payoff cannot exceed 3
4
(a1 − ĉ)− φ < 0.

We now show that there exists an IC sequence of 1-level schemes that enables the SO

to make a strictly positive expected profit. To see this, consider a profile of strategies

in which the SO makes an offer only in period 1, agent i1 accepts the SO’s offer, and

i1 makes an offer in period 2 if he meets agent i2. Moreover, suppose that agent i2

rejects every offer regardless of the identity of the proposer. This profile induces the

analogy-based expectations β1 = 3
4

and β2 = 1.

Let φ1 = 2ĉ, a1
1 = 8

3
(c + 2ĉ) + ĉ, φ2 = a1

1, and a2
2 ≤ φ2. It is easy to verify that

the sequence is IC. Given R1, β1 = 3
4
, and β2 = 1, the first entrant finds it optimal to

purchase a license and the SO obtains a strictly positive expected payoff. Moreover,

the second entrant finds it suboptimal to purchase a license regardless of the schemes

used. Thus, the SO can sustain a pyramid scam by means of two 1-level schemes. Note

that the license fee increases over time, which enables the SO to offer the first entrant

a recruitment commission a1
1 greater than the fee φ1. That is, while R1 is not IC, the

sequence of schemes is IC.

B.3 Technical Results and Proof of Proposition 3

Technical results: Linear bounds for Step 1 of Proposition 3

Lemma 3 Fix γ′ > 0 such that q(log (1/γ′) (1− c+ĉ
q(log(1/γ′)−1)

)− ĉ > γ′. There exists a

number n(γ′) such that for every n > n(γ′) it holds that πABEE(Rn) ≥ γ′
2
n.

Proof. Denote k = dγ′ne. Let R be a 1-level scheme in which η = 1, φ = ĉ, a1 = ĉ,

and b1 = c+ĉ
qvk

. Consider a profile σ in which every agent accepts (resp., rejects) every

offer he receives up to (resp., after) period k and every distributor makes an offer to

every agent he meets. It is easy to verify that σ is part of an ABEE of Γ(R). For a

sufficiently large n, it holds that 1 + vk > log (1/γ′) and b1 <
c+ĉ

q(log(1/γ′)−1)
. The SO’s

expected payoff under σ is greater than k
(
q[1+vk] (1− b1)−ĉ

)
. Hence, for a sufficiently
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large n, it holds that

πABEE (Rn) ≥ πABEE (R) ≥ γ′n

(
q(log (1/γ′) (1− c+ ĉ

q(log(1/γ′)− 1)
)− ĉ

)
≥ γ′

2

n. (20)

Lemma 4 There exist γ̄ ∈ (0, 1) and n (γ̄) ∈ N such that min{kn1 , kn2 } > γ̄n for every

n > n (γ̄).

Proof. The SO obtains a revenue of at most 1 +B from every distributor and 1 from

each agent who meets a distributor but does not purchase a license. Hence, in an

ABEE in which k2 ≥ k1, the SO obtains an expected revenue smaller than

kn1
(
1 +B + vkn1

)
+ vkn1 < kn1 (2 +B + log (n/kn1 )) + log (n) + 1.

In an ABEE in which k2 < k1, the SO obtains an expected revenue smaller than

kn2
(
1 +B + vkn2

)
+

k1∑
j=kn2 +1

vj + 1 +B

j
+ vkn1 < kn2 (2 +B + log(n/kn2 )) + (1 +B + log(n))2.

There exists γ̄ > 0 that satisfies γ̄log (1/γ̄) < min {γ2/2, 1/e} and n (γ̄) such that if

n > n (γ̄) and min{kn1 , kn2 } ≤ γ̄n, then the linear lower bound on the SO’s expected

profit in (20) is greater than both of the above upper bounds.

We can conclude that there exists a constant γ < 1 and an integer n′ such that, for

every n > n′, it holds that πABEE (Rn) > γn, kn1 > γn, and kn2 > γn. This proves Step

1 in the proof of Proposition 3.

Technical results on random trees: Completion of Steps 3 and 4 in Proposition 3.

Lemma 5 For every j ∈ {1, ..., n− 1} and τ > 1 it holds that vjlj,τ−1 ≥ 2lj,τ .

Proof. Note that if j + τ > n, then lj,τ = 0. Observe that vjlj,1 = 2lj,2 +
∑n

z=j+1
1
z2

if j ≤ n − 1. We prove the lemma by induction on the size of τ . We assume that

vjlj,τ−1 ≥ 2lj,τ and show that it implies that vjlj,τ ≥ 2lj,τ+1. We can write the latter

inequality as:

vj

(
lj+1,τ−1

j + 1
+
lj+2,τ−1

j + 2
+ ...

)
≥ 2

(
lj+1,τ

j + 1
+
lj+2,τ

j + 2
+ ...

)
. (21)
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We can combine the induction hypothesis with the fact that vj is weakly decreasing in

j to see that (21) holds.

Calculating the “cost-benefit” ratios w
κ

and ŵ
κ

(Step 3)

We need to show that, for a sufficiently large n it holds that w(z)
κ(z)
≥ w(z′)

κ(z′)
and ŵ(z)

κ(z)
≥

ŵ(z′)
κ(z′)

with at least one strict inequality for every z ∈ {a1, b2} and z′ ∈ {a3, ..., aτ? , b3, ..., bτ?}.
First, consider the SO’s expected cost κ(aτ ) that is given in (11) and note that this

is essentially the expected number of the first x = min{kn1 , kn2 } entrants whose distance

is greater than τ . The next lemma shows that when x goes to infinity, the share of the

first x entrants whose distance from the SO is greater than τ goes to 1.

Lemma 6 For every τ ∈ N it holds that

limx→∞
∑
G′∈Gn

∑
j∈G

1 (d (SO, j) > τ)

xx!
= 1. (22)

Proof. The tree G is a uniform random recursive tree rooted at the SO, and the

distance d (SO, it) corresponds to the insertion depth of the (t+ 1)-th node. Theorem

1 in Mahmoud (1991) establishes that the normalized insertion depth M?
i = Mi−log(i)√

log(i)

has the limiting distribution N (0, 1), i.e., the standard normal distribution. Thus, the

proportion of nodes inserted at a distance greater than τ from the root on the LHS of

(22) goes to 1 when the size of the random tree, x, goes to infinity (to obtain the LHS

of (22), note that the number of trees of size x+ 1 is x!).

By Lemma 4, min{kn1 , kn2 } > γn for a sufficiently large n. Thus, Lemma 6 implies

that limn→∞
κ(aτ )
κ(aτ+1)

= 1 and limn→∞
κ(bτ )
κ(bτ+1)

= 1 for every τ ∈ {2, ..., τ ?− 1}. Moreover,

limn→∞
κ(a1)
κ(a2)

= 1.

We now split the analysis into three cases: (1) n = kn2 > kn1 , (2) n > kn2 > kn1 , and

(3) kn2 ≤ kn1 .

Case 1. The analogy-based expectations in this case are β1 = 1
1+vkn1

and βn2 = 1.

Thus, w(aτ )
w(bτ )

= 1
q(1+vkn1

)
. Recall from the main text that κ(bτ ) = qκ(aτ ) + qκ(aτ−1)vkn1

for τ > 1 and κ(b1) = qκ(a1) + qkn1 vkn1 . By definition, kn1 > κ(a1) > ... > κ(aτ?).

Moreover, by Lemma 6, κ(aτ )
kn1

goes to 1 when n goes to infinity for every τ ∈ {1, ..., τ ?}.
Thus, for a sufficiently large n it holds that w(aτ )

κ(aτ )
> w(bτ )

κ(bτ )
. By Lemma 5 it holds that

w(aτ ) ≥ 2w(aτ+1) and w(bτ ) ≥ 2w(bτ+1). We can conclude that, for a sufficiently large

n, it holds that
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w(a1)

κ(a1)
>
w(b1)

κ(b1)
>
w(a2)

κ(a2)
>
w(b2)

κ(b2)
>
w(z)

κ(z)
(23)

for every z ∈ {a3, ..., aτ? , b3, ..., bτ?}. Note that ŵ(a1) = 1 > 0 = w(z) for every

z ∈ {a2, ..., aτ? , b1, ..., bτ?}.
Case 2. The analogy-based expectations in this case are β1 = 1

1+vkn1
−vkn2

and

βn2 =
kn1 −

∑kn1
t=1

1
t

+ kn1 (vkn1 − vkn2 )

(kn1 −
∑kn1

t=1
1
t

+ kn1 vkn1 )
,

where
∑kn1

t=1
1
t

represents the SO’s expected number of offers in periods t = 1, ..., kn1 .

Hence, βn1 β
n
2 ≤ 1

1+vkn1
. Since

kn1

kn1−
∑kn1
t=1

1
t

goes to 1 when n goes to infinity, for a sufficiently

large n, βn1 β
n
2 is arbitrarily close to 1

1+vkn1
. Note that q

βn1 β
n
2
w(aτ ) = w(bτ ) for τ > 1.

Thus, for a sufficiently large n, w(aτ )
κ(aτ )

is arbitrarily close to w(bτ )
κ(bτ )

for τ > 1. As above,

we can use Lemma 5 to show that w(aτ ) ≥ 2w(aτ+1) for τ ≥ 1 and w(bτ ) ≥ 2w(bτ+1)

for τ > 1. We can conclude that

w(a1)

κ(a1)
>
w(b2)

κ(b2)
>
w(z)

κ(z)
(24)

for every z ∈ {a3, ..., aτ? , b3, ..., bτ?}. We can repeat the above exercise for the ratio ŵ
κ

(the proof is identical to the one for the ratio w
κ

and, therefore, it is omitted).

Case 3. The analogy-based expectations in this case are βn1 = 1 and

βn2 =
kn2 −

∑kn2
t=1

1
t

kn2 −
∑kn2

t=1
1
t

+ kn2 vkn2 +
∑kn1

j=kn2 +1
vj
j

.

It is easy to see that w(b1) > 0 and w(z) = 0 for every z ∈ {a1, ..., aτ? , b2, ..., bτ?},
as agent ikn2 does not expect to sell licenses. It is left to consider the ratio ŵ

κ
. Clearly,

ŵ(a1) = 1 >
vkn2

1+vkn2
≥ βn1 β

n
2 vkn2 = ŵ(a2). Since βn1 β

n
2 < 1

1+vkn2
, Lemma 5 implies that

ŵ(aτ ) ≥ 2ŵ(aτ+1) for every τ > 1. Similarly, Lemma 5 implies that ŵ(bτ ) ≥ 2ŵ(bτ+1)

for every τ > 1.

Note that Lemma 4 implies that kn2 > γ̄n for large n. As a result, vkn2 is bounded

from above (e.g., by log( 1
γ̄
)+1). Furthermore, for a sufficiently large n, βn2 is arbitrarily
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close to 1
1+vkn2

. This implies that, for a sufficiently large n, ŵ(aτ ) is arbitrarily close

to ŵ(bτ ) for any τ > 1. Moreover, since vkn2 is bounded from above, ŵ(a2) is bounded

below 1 = ŵ(a1). We can conclude that, for a sufficiently large n, it holds that

ŵ(a1)

κ(a1)
>
ŵ(b2)

κ(b2)
>
ŵ(z)

κ(z)
(25)

for every z ∈ {a3, ..., aτ? , b3, ..., bτ?}.
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