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Abstract

Motivated by the growing discussion on the legitimacy of multilevel marketing

schemes and their resemblance to pyramid scams, we compare the two phe-

nomena based on their underlying compensation structures. We identify the

conditions on the tendency of agents to spread information by word of mouth,

under which a principal can design a pyramid scam to exploit a network of agents

whose beliefs are coarse. We find that a pyramid scam is sustainable only if its

underlying reward scheme compensates each participant based on at least two

levels of recruitment, i.e., the people he recruits and the people they recruit.

What delineates pyramid scams from legitimate multilevel marketing enterprises? Dra-

matic recent growth1 in the multilevel marketing (MLM) industry—which over the past

five years has engaged over 20 million2 Americans—has raised the urgency of this ques-

tion for consumer protection agencies. MLM companies such as Avon, Amway, Herbal-

ife, and Tupperware use independent representatives to sell their products to friends

and acquaintances. They all promote the opportunity of starting one’s own business

and making extra income; however, some (e.g., Bort, 2016) view these companies as

pyramid scams whose main purpose is to take advantage of vulnerable individuals.

∗I am particularly grateful to Rani Spiegler for many insightful discussions and useful suggestions.
I thank Vellore Arthi, Benjamin Bachi, Kfir Eliaz, Erik Eyster, Michael D. Grubb, Paul Heidhues,
Philippe Jehiel, Alessandro Lizzeri, Francesco Nava, Ronny Razin, Santiago Oliveros, Michael Richter,
and Ariel Rubinstein for useful comments and suggestions. I also thank seminar and conference
audiences at the 17th Annual Berkeley/Columbia/Duke/MIT/Northwestern IO Theory Conference,
EARIE 2018, Frankfurt Behavioral IO Workshop, Israeli IO Day, Essex, IDC Herzliya, Hebrew Uni-
versity, LSE, Manchester, Royal Holloway, Technion, Tel Aviv, Toulouse, UCL, and Warwick.
†Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel. E-mail: yair.an@gmail.com
1Membership in MLMs is substantial and growing. For example, the global force of independent

distributors reached nearly 117 million in 2017 (World Federation of Direct Selling Associations, 2018).
2According to the Direct Selling Association’s (DSA) annual report (DSA, 2016).
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The MLM industry’s questionable legitimacy received considerable media attention3

following a recent feud between Herbalife and the hedge-fund tycoon Bill Ackman, a

dispute that led to an FTC investigation against the former party (FTC, 2016a). Iden-

tifying whether a particular company is a legitimate one, or whether it is an exploitative

pyramid scam that promotes useless goods and services in order to disguise itself as a

legitimate firm, can be a daunting task. One obstacle is that MLM companies typically

sell products whose quality is difficult to assess, such as vitamins and nutritional sup-

plements. The common wisdom among practitioners is that a company is legitimate if

the distributors are encouraged to sell the product, and it is an illegal pyramid scam if

it prioritizes recruitment over selling (FTC, 2016b). However, it is extremely difficult

to determine the company’s true “selling point” and, in practice, it is challenging to

distinguish between sales to members and sales to the general public.

The objective of this paper is to draw the boundary between the two phenomena

based on their underlying compensation schemes. The premise of our analysis is that

the potential distributors are strategic, and that the MLM company (or the pyramid

organizer) chooses a compensation scheme while taking these prospective distributors’

incentives into account. To understand the structure of the potential reward schemes,

consider the following example.

Example 1 The reward scheme R pays every distributor a commission of b1 for every

retail sale that he makes and a commission of a1 for every agent that he recruits to the

sales force. The reward scheme R′ pays every distributor a commission of b′1 for every

retail sale that he makes and a commission of b′2 for every retail sale made by one of

his recruits. It also pays every distributor a′1 for every one of his recruits and a′2 for

every one of his recruits’ recruits. Both schemes charge an enrolment fee4 of φ ≥ 0 from

every distributor. We refer to a1, a
′
1, and a′2 as recruitment commissions, and to reward

schemes such as R (respectively, R′) as one-level (respectively, multilevel) schemes as

they compensate the distributors based on the first level (respectively, multiple levels)

of their downline.

Observe that both R and R′ compensate the distributors for recruiting others to work

for the company. In practice, however, over 90% of the network marketing industry

uses multilevel schemes such as R′, rather than one-level schemes such as R (DSA,

3See, e.g., McCrum (2016), McKown (2017), Multi-level Marketing in America (2015), Moyer
(2018), Parloff (2016), Pierson (2017), Suddath (2018), Truswell (2018), and Wieczner (2017).

4In practice, fees are often presented as training costs or a requirement to purchase initial stock.
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2014). Moreover, even though there is no obvious reason why one-level schemes such

as R cannot be used for the purpose of sustaining a pyramid scam, various companies

that were deemed5 pyramid scams used multilevel reward schemes. What can explain

these stylized facts? Can a legitimate company benefit from charging entry fees, paying

recruitment commissions, or offering multiple routes through which individuals can join

the sales force? Does the answer depend on whether the company promotes genuine

goods or just the opportunity to recruit others to the sales force?

In order to address the above questions, we develop a model in which a scheme

organizer (SO) tries to sell a good to a network of agents that is formed randomly and

sequentially. In order to reach large parts of the network, the SO sells distribution

licenses to some of the agents. Distributors can sell units of the good as well as

distribution licenses, and they are compensated according to a reward scheme that is

chosen in advance by the SO. A key feature of the model is that each agent’s likelihood

of meeting new entrants (i.e., potential buyers and distributors) decreases as time

progresses, which makes it unattractive to join the sales force late in the game.

Assume for a moment that the good has no intrinsic value such that the only “prod-

ucts” that are being traded are distribution licenses. If there exists a reward scheme

such that the SO makes a strictly positive expected profit in its induced game, then

we have a pyramid scam. Pyramid scams are, roughly speaking, zero-sum games and,

therefore, fully rational economic agents will never participate in them. Nevertheless,

we observe countless such scams in the real world (see, e.g., Keep and Vander Nat,

2014, and the references therein). Hence, if we wish to better understand such scams

and their underlying compensation schemes, we must depart from the classic ratio-

nal expectations framework. We shall use Jehiel’s (2005) framework of analogy-based

expectation equilibrium to relax the requirement that the agents have a perfect under-

standing of the other agents’ behavior in every possible contingency, while maintaining

that the agents’ beliefs are statistically correct.6

Under the behavioral model, each agent correctly predicts (and best responds to)

the other agents’ average behavior. However, he neglects the fact that the other agents’

strategies might be time-contingent. This mistake leads each agent to mispredict the

other agents’ “marginal” equilibrium behavior (e.g., to think that other agents might

5See, e.g., FTC v. Fortune Hi-Tech Marketing Inc. (2013) for a pyramid scam that used a multilevel
reward scheme to enrol over 100,000 distributors in the United States and Canada.

6In the online appendix, we examine the implications of other behavioral models (e.g., heteroge-
neous prior beliefs) for our results.

3



agree to join the sales force late in the game when it is no longer beneficial to do so).

Despite this mistake, each agent’s beliefs are statistically correct and can be interpreted

as resulting from the use of a simplified model of the other agents’ behavior, or as

learning from partial feedback about their behavior in similar past interactions (e.g.,

past schemes organized by the SO).

An individual who contemplates joining a pyramid often tries to assess his ability to

recruit others. A general insight that emerges from the model is that individuals who

understand others’ average behavior do not overestimate their own ability to recruit

by much, if at all. Therefore, the SO cannot exploit such individuals and sustain

a pyramid scam by means of one-level schemes such as R. Multilevel schemes such

as R′ induce more complicated contracts that include additional variables that the

prospective participants may mispredict (e.g., their recruits’ ability to recruit). All of

these prediction errors are small. However, the accumulation of these prediction errors

enables the SO to sustain a pyramid scam by means of a multilevel scheme.

We provide necessary and sufficient conditions on the number of agents and their

tendency to spread information by word of mouth under which the SO can sustain a

pyramid scam, and we show that multilevel schemes can support such a scam whereas

one-level schemes cannot generate a strictly positive expected profit for the SO.

In order to better understand legitimate MLM, we shall examine a setting in which

the goods have an intrinsic value such that the SO benefits from selling them. The

reward scheme’s objective in this case is to incentivize the distributors both to sell the

products and to propagate information about them, while maintaining a low overhead.

We solve for the SO’s optimal scheme under two behavioral assumptions. First, we

show that if the agents are fully rational, then schemes that maximize the SO’s expected

equilibrium profit do not charge license fees, nor do they pay recruitment commissions.

Second, when the SO faces a population of analogy-based reasoners, then if the number

of agents is sufficiently large, under mild assumptions, optimal schemes compensate

the distributors only for sales and do not charge license fees. Thus, the two pyramidal

components—recruitment commissions and license fees—are not in use when the good

is intrinsically valued even though the agents are vulnerable to deceptive practices.

The main contribution of the paper is fourfold. First, we develop a model that

enables us to better understand what makes pyramid scams work. Second, our results

suggest an explanation as to why such scams often rely on multilevel reward schemes

and dubious “passive income” promises (Securities and Exchange Commission, 2013).
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Third, our analysis shows how the presence of rational agents can prevent vulnerable

agents from participating in exploitative pyramid scams in noncompetitive environ-

ments. Finally, our analysis of legitimate MLM allows us to more clearly draw the

dividing line between exploitative scams and legitimate MLM enterprises.

Related literature

Our paper relates to a strand of the behavioral industrial organization literature in

which rational firms exploit boundedly rational agents. Spiegler (2011) offers a text-

book treatment of such models. In Eliaz and Spiegler (2006, 2008), a principal interacts

with agents who differ in their ability to predict their future tastes. Grubb (2009) stud-

ies contracting when agents are overconfident about the accuracy of their forecasts of

their own future demand. Grubb (2015) illustrates how various contractual features

can be used to exploit overconfidence (e.g., automatic renewal). In Gabaix and Laib-

son (2006), firms may hide information about add-on prices from unaware consumers.

Heidhues and Kőszegi (2010) study exploitative credit contracts when consumers are

time-inconsistent. Crawford et al. (2009) show that bidders who are characterized

by level-k thinking can be exploited by a rational auctioneer. Jehiel (2011) studies

manipulative auction design when the bidders’ reasoning is coarse.

We use analogy-based expectation equilibrium (Jehiel, 2005) as our behavioral

framework. A closely related concept, “cursed equilibrium,” was developed by Eyster

and Rabin (2005) for games of incomplete information. In a cursed equilibrium, agents

fail to realize the extent to which the other players’ actions depend on their private

information. Piccione and Rubinstein (2003) study intertemporal pricing when con-

sumers reason in terms of a coarse representation of the correct equilibrium price

distribution. Other prominent models in which players reason in terms of a coarse

representation of the world are Jehiel and Koessler (2008), Mullainathan et al. (2008),

Eyster and Piccione (2013), Guarino and Jehiel (2013), and Steiner and Stewart (2015).

In Eyster and Rabin (2010), in the context of social learning, agents believe that their

predecessors are cursed (i.e., do not learn from their own predecessors’ behavior).

This article is also related to the “Dutch Books” literature that studies the vul-

nerability of nonstandard preferences or of nonstandard decision-making procedures

to exploitative transactions. For example, Rubinstein and Spiegler (2008) examine

the extent to which agents who employ a sampling procedure in the spirit of the S-1

equilibrium are vulnerable to exploitative transactions offered by a rational market
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maker. Laibson and Yariv (2007) show that competitive markets may protect agents

with nonstandard preferences from exploitative schemes.

Pyramid scams are related to speculative bubbles. Shiller (2015) describes such

bubbles as naturally occurring Ponzi processes7 (i.e., bubbles do not include the design

and recruitment elements). Tirole (1982) shows that such bubbles cannot exist under

the classic rational expectations model. Harrison and Kreps (1978) suggest a resale

option theory of bubbles that is based on heterogeneous prior beliefs. In their model,

investors overpay for an asset in the hope of reselling it at an even higher price in

the future. A different strand of the literature suggests a feedback loop theory of

bubbles. For example, in DeLong et al. (1990), rational investors anticipate that

positive-feedback noise traders will push an asset’s price above its fundamental value

in the future, and so purchase the asset in order to resell it at an inflated price. These

purchases fuel the noise traders’ demand and inflate the price further. Bianchi and

Jehiel (2010) show that the analogy-based expectation equilibrium logic can sustain

both bubbles and crashes in equilibrium.8

Pyramids and MLM have received considerable attention outside of the economics

literature. A strand of the computer science literature (see, e.g., Emek et al., 2011;

Babaioff et al., 2012) focuses on MLM mechanisms’ robustness to Sybil attacks. The

marketing literature has addressed ethical issues in MLM and the resemblance of such

schemes to pyramid scams. The common view in that literature is that a company is

a pyramid scam if the participants’ compensation is based primarily on recruitment

rather than sales to end users (see, e.g., Koehn, 2001; Keep and Vander Nat, 2002).

The paper proceeds as follows. We present the model in Section 1 and analyze pyra-

mid scams in Section 2. Section 3 examines legitimate MLM and Section 4 concludes.

All proofs are relegated to Appendix A.

1 The Model

There is a scheme organizer (SO) who produces a good free of cost and with no capacity

constraints, and a set of agents I = {1, ..., n}. Each agent i ∈ I is characterized by a

7Although Ponzi schemes and pyramid schemes are related and these terms are often used synony-
mously, there are several differences between them. In particular, Ponzi scheme participants are not
required to recruit new members in order to make a profit. Moreover, they sometimes believe that an
ordinary investment underlies the operation. For example, the participants in Wincapita, a Finnish
Ponzi scheme, did not know the true nature of the operation until it collapsed (Rantala, 2019).

8We shall discuss Abreu and Brunnermeier’s (2003) model of speculative bubbles in Section 4.
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unit demand and two numbers: his willingness to pay ωi ∈ {0, 1} and his talkativeness

ψi ∈ {0, 1}. The term “talkativeness” will be clarified soon. For every agent i ∈ I, we

assume that ωi and ψi are drawn independently and we denote p := Pr (ψi = 1) and

q := Pr (ωi = 1), respectively.

Time t = 1, 2, ..., n is discrete. In each period t, nature draws a new agent (uniformly

at random) who enters the game and meets one player who is chosen uniformly at

random from a group of players that includes the SO and every agent who entered the

game prior to period t. For example, the second entrant meets either the SO or the

first entrant, each with probability 0.5. We often use it to denote the t-th entrant. Let

G denote the directed tree, rooted at the SO, that results at the end of this process and

let Gi denote the subtree of G rooted at i ∈ I. We denote the length of the directed

path between i ∈ I ∪ {SO} and j ∈ I by dG (i, j).

SO i1 i2 i7

i4i5 i6

i3i8i9

Figure 1: A snapshot of G at the end of period 9.

For each t ≥ 1, let Dt be a set that includes the SO and the distributors at the

beginning of period t. The t-th entrant is a potential distributor if there exists a j ∈ Dt

such that there is a directed path connecting the t-th entrant to j and every agent on

that path is talkative (i.e., ψl = 1 for every agent l on that path).

For each t ≥ 1, if the t-th entrant is a potential distributor, then there is a unique

player j ∈ Dt such that every agent on the directed path connecting the t-th entrant

and j is not a distributor (from the t-th entrant’s perspective, j is the nearest member

of Dt). In period t, player j can offer the t-th entrant the opportunity to become a

distributor. If the t-th entrant receives such an offer, then he can accept it and become

a distributor or reject it. In addition, regardless of whether an offer is made by j, the

t-th entrant purchases a unit of the good for personal consumption from j at a price

ηR that is predetermined by the SO if and only if9 ωit ≥ ηR. If the t-th entrant is not

a potential distributor, then he does not receive an offer to become a distributor and

does not purchase the good.

9It is possible to make the price and the decision to sell/buy the good endogenous without changing
the main results in this article.
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To understand the game, consider a history such that, at the end of period 9, G

is as presented in Figure 1, D10 = {SO, i1, i2, i3}, ψi4 = 0, and ψi5 = ψi6 = ψi7 =

ψi8 = ψi9 = 1 (i.e, i4 is not talkative and i5,i6,i7,i8, and i9 are talkative). Recall that

i10 is equally likely to meet each of the players who entered the game prior to period

10. If i10 meets a player j ∈ D10, then j decides whether or not to make i10 an offer

to become a distributor. If i10 meets a non-distributor j ∈ {i4, i5}, then i10 will not

receive an offer or purchase the good as the path from the SO is “blocked” by agent

i4 who is not talkative and not a distributor. However, if i10 meets a non-distributor

j ∈ {i6, i7, i8, i9}, then j will refer i10 to the nearest member of D10 who will then

decide whether or not to make an offer to i10. Thus, i7 will refer i10 to i2, i6 will refer

him to the SO, and i9 will refer him to i3 via i8.

Reward schemes, payoffs, and information

The distributors are paid according to a reward scheme that is chosen in advance by

the SO. Each reward scheme R includes four components:

• An entry fee φR ≥ 0.

• Recruitment commissions: aR1 , a
R
2 , a

R
3 , ... ≥ 0.

• Sales commissions: bR1 , b
R
2 , b

R
3 , ... ≥ 0.

• A price ηR ≥ 0 at which each unit of the good is sold.

When the t-th entrant purchases a unit of the good (respectively, becomes a distribu-

tor), each distributor l ∈ Dt who is on the path connecting the SO to the t-th entrant

obtains a commission of bRy+1 (respectively, aRy+1) from the SO, where y ≥ 0 is the

number of distributors on the path connecting l to the t-th entrant. In addition, the

SO receives ηR (respectively, φR) from the t-th entrant.

We assume that each agent who becomes a distributor incurs a cost of c ≥ 0 that

reflects learning about the good and how to sell it. When an agent contemplates

purchasing a distribution license (i.e., becoming a distributor), he weighs the expected

sum of commissions that he will obtain given R and his beliefs about the other players’

behavior against the total cost of becoming a distributor c+ φR.

The SO faces the risk that the distributors will create fictitious recruits in order

to become eligible for additional commissions.10 Motivated by this risk, we shall focus

10In the computer science literature, a reward scheme’s robustness to manipulations in this spirit
is often referred to as robustness to local false-name manipulations or robustness to local splits (see,
e.g., Emek et al., 2011; Babaioff et al., 2012).
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on schemes where aRτ ≤ φR and bRτ ≤ ηR for each τ ≥ 1, and refer to such schemes

as incentive-compatible (IC) schemes. The IC constraint implies that for a distributor,

the cost of creating a fictitious new tree of sales and recruits is greater than the direct

benefit of doing so (i.e., the transfers from the SO to the root). The IC constraint rests

on the assumption that the SO can verify11 the identity of any distributor who wishes

to receive commissions and, therefore, even if a distributor were to create a fictitious

recruit he would not be able to collect the commissions that the fictitious recruit would

be eligible to receive.

Every scheme R induces a game, which we shall denote by Γ (R). The SO’s highest

expected profit in an equilibrium of Γ (R) is denoted by π (R). We assume that t, q, p,

and the network formation process are commonly known and that, for each i ∈ I, ωi

and ψi are i’s private information. For each i ∈ I ∪ {SO}, Hi is the set of nodes in

which i must move. Player i’s (i ∈ I ∪ {SO}) strategy is a mapping σi : Hi → {0, 1},
where in each h ∈ Hi, i decides whether or not to make an offer, or else decides whether

or not to accept one.12 To simplify the exposition, we shall assume that if an agent

i ∈ I is indifferent between making an offer and not doing so, then he will make it

(none of the results in the paper are sensitive to this assumption).

Discussion: Modeling assumptions

Meeting process. We borrow the meeting process from the applied statistics literature,

where it is referred to as the uniform random recursive tree model (for a textbook

treatment, see Drmota, 2009).13 This process rests on the assumptions that there is

a deterministic date at which the game ends and that the number of entrants in each

period t is independent of t. Our main results do not depend on these assumptions.

Nonetheless, we use this process since it allows us to convey the main messages while

keeping the exposition simple. To show the robustness of our results, in the online

appendix, we modify the process such that conditional on reaching period t, there is a

probability δ < 1 that the process continues for an additional period and a probability

1 − δ that the process ends immediately. In addition, in the concluding section, we

11We shall discuss the verifiability assumption in detail in the concluding section.
12Our results are robust to any assumption about what a player who moves in period t knows about

the events that took place prior to t (e.g., the network’s realization, whether offers were made, whether
licenses were sold, etc.) and, therefore, we refrain from making any such assumption.

13Gastwirth (1977) and Bhattacharya and Gastwirth (1984) used this model to examine two real-
world pyramid scams and to demonstrate that only a small fraction of the participants can cover the
entry fees. In none of these papers, however, is there strategic interaction.
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illustrate the robustness of our results to a more “traditional” branching process in

which new entrants can only meet “leaves” in the existing tree.

Talkativeness. The word-of-mouth parameter p adds a realistic aspect to the model,

where talkativeness can be interpreted as an agent’s tendency to mention the good to

others even when he does not have any financial incentive to do so (i.e., when the

agent is not himself a distributor). In addition to making the model more realistic, p

also provides a natural rationale for recruitment-based compensation in a “legitimate”

setting where the SO faces fully rational agents. When p > 0, a distributor l who sells

a distribution license to an agent j ∈ I loses his direct access to j’s successors but

improves the chances that j’s successors will purchase the good (e.g., directly from j).

Thus, in order to incentivize such information propagation, the reward scheme must

compensate the distributors for such losses. As we shall see later, the talkativeness of

non-distributing agents has an additional nontrivial negative effect on the SO’s ability

to sustain a pyramid scam when he faces boundedly rational agents.

2 Pure Pyramid Scams (q = 0)

In order to capture the idea that the only “product” that is being traded in a real-

world pyramid scam is the right to recruit others to the pyramid, we set q = 0. Thus,

it is commonly known that the only products that are being traded in the model

are distribution licenses (when an agent accepts an offer to become a distributor, we

say that he purchases a distribution license from the distributor who made the offer).

Intuitively, such a market should not exist as trade in distribution licenses does not

add value. If q = 0 and there exists a scheme R such that π (R) > 0, then we say that

the SO is able to sustain a pyramid scam. The next result establishes that when all of

the agents are fully rational, the SO cannot sustain such a scam.

Proposition 1 Let q = 0. There exists no IC reward scheme R such that the SO

makes a strictly positive expected profit in a subgame perfect Nash equilibrium of Γ (R).

Since q = 0, reward schemes induce zero-sum transfers between the agents and the SO.

Proposition 1 then follows directly from classic no-trade arguments (Tirole, 1982).

Our main objective is to understand the forces and compensation plans that enable

pyramid scams to operate. As Proposition 1 shows, it is impossible to do so by means of

the classic rational expectations model and we shall therefore depart from this model.
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We shall weaken the Nash equilibrium assumption that agents have complete under-

standing of the other agents’ behavior in every possible contingency, an assumption

that might be too extreme in complicated settings such as the present one.

2.1 The behavioral model

Jehiel (2005) suggests an elegant framework that incorporates partial sophistication

into extensive-form games. We adopt this framework and use analogy-based expectation

equilibrium to solve the model. In an analogy-based expectation equilibrium, different

contingencies are bundled into analogy classes and the agents are required to hold

correct beliefs about the other agents’ average behavior in every analogy class.

Our agents have this type of correct, yet coarse, perception of the other agents’

behavior. They understand the frequencies at which the other agents accept and make

offers. However, they do not understand that the other agents’ behavior can be time-

contingent. In simple words, agents do not base their expectations that offers will be

accepted on the time at which they are made. Instead, they pool all offers made at

any point in time and consider the average rate of offer acceptances. Thus, each agent

views the other agents’ behavior as if it were time-invariant.

In equilibrium, the agents’ beliefs about the other agents’ behavior are statistically

correct. These beliefs can be interpreted as a result of learning from partial feedback

about the behavior in similar games that were played in the past (e.g., similar schemes

that the SO organized). One motivation for the agents’ coarse reasoning is that ob-

taining feedback about the aggregate behavior in these past schemes’ induced games

might be easier than gathering information about the time and context in which each

offer was made.

For each i ∈ I, denote by H1
i (respectively, H2

i ) the set of nodes in which i decides

whether or not to purchase a license (respectively, offer a license). Let M1 := ∪i∈IH1
i

and M2 := ∪i∈IH2
i . We shall use σ = (σi)i∈I∪{SO} to denote a profile of strategies,

and rσ (h) to denote the probability of reaching h ∈ M1 ∪M2, conditional on σ being

played. For each h ∈M1∪M2, we use σ (h) = 1 (respectively, σ (h) = 0) to denote that

the agent who moves at h makes an offer or accepts one (respectively, makes no offer

or rejects one). For each i ∈ I, βi = (βi1, β
i
2) are agent i’s analogy-based expectations.

Definition 1 Agent i’s analogy-based expectations βi are said to be consistent with the

profile of strategies σ if, for every k ∈ {1, 2}, it holds that βik =
∑
h∈Mk

rσ(h)σ(h)∑
h∈Mk

rσ(h)
whenever

rσ (h) > 0 for some h ∈Mk.
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A strategy σi is a best response to βi if it is optimal given the belief that every agent

j 6= i accepts every offer that he receives with probability βi1 and that, if j has the

opportunity to make an offer, then he makes it with probability βi2. Let β := (βi)i∈I .

Definition 2 The pair (σ, β) forms an analogy-based expectation equilibrium (ABEE)

if, for each i ∈ I, βi is consistent with σ and σi is a best response to βi.

Consistency implies that, in an ABEE, βi1 = βj1 and βi2 = βj2 for every pair of agents

i, j ∈ I. Therefore, we shall omit the superscript and use β1 and β2 to denote the

agents’ analogy-based expectations.

Discussion: Consistency, analogy classes, and the SO’s strategy

Consistency. Definition 1 corresponds to the definition of weak consistency in Jehiel

(2005). The two notions do not place any restrictions on the agents’ beliefs about

analogy classes that are not reached with strictly positive probability. We can refrain

from placing such restrictions as the only equilibria in which M1 and M2 are not reached

with strictly positive probability are equilibria in which the SO never makes any offers,

which are of secondary interest and do not have any effect on our results.

Consistency implies that, in an ABEE, the agents’ expectations β1 match the offer

acceptance rate. An important feature of consistency is that histories are weighted

according to the likelihood of their being reached. To see this, let p = 0, n = 3, and

consider a profile σ such that every agent purchases a distribution license when he is

offered the opportunity to do so in period 1 and rejects every offer made after period

1. Further, assume that under σ, in each period t ∈ {1, 2, 3}, every i ∈ Dt makes an

offer if he meets an agent. Thus, under σ, the first two entrants always receive an

offer. The third entrant receives an offer with probability 2
3

since, with probability 1
3
,

he meets the second entrant who cannot make him an offer. Only the first of the 8
3

offers is accepted. Hence, β1 = 1
1+1+ 2

3

= 3
8
> 1

3
is consistent with σ.

Analogy classes. Each agent i’s analogy classes, M1 and M2, consist of all of the

nodes in which agents move, including nodes in which i himself moves. This is con-

sistent with the interpretation of i’s behavior as best responding to coarse feedback

about the behavior in similar games that were played in the past by a different set of

players (i.e., i himself did not play in these games). Note that since i was not a player

in these past games, his own actions do not affect his analogy-based expectations.

We can exclude the nodes in which agent i moves from his own analogy classes.

These alternative analogy classes are consistent with the interpretation of i’s behavior
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as best responding to coarse feedback about the behavior in similar games in which

i himself played in the past (i’s actions in these past games are excluded from his

analogy classes and so they influence his expectations only through their effect on rσ).

All of our results hold under both types of analogy partitions.14

The SO’s strategy. The solution concept does not require that the SO’s strategy be

optimal. Thus, effectively, the SO is allowed to commit to a strategy. He can potentially

benefit from such commitment as his behavior affects β. The SO’s commitment power

allows us to simplify the exposition. It should be stressed, however, that all of our

results hold when we require that the SO’s strategy be optimal.

2.2 Structure and existence of pyramid scams

The main result of this subsection (Theorem 1) shows that the SO cannot sustain a

pyramid scam by means of a reward scheme that pays the distributors only for the

number of licenses they sell. Thus, behind every pyramid scam is a scheme that pays

the distributors based on at least two levels of recruitments. Theorem 2 provides

necessary and sufficient conditions on the number of potential participants n and their

tendency to propagate information by word of mouth p under which a pyramid scam is

sustainable. Theorem 3 then shows that the necessary condition of Theorem 1 is tight.

We start by asking whether the SO can sustain a pyramid scam by means of a

reward scheme that compensates the distributors only for people whom they recruit to

the pyramid directly. We shall refer to such a reward scheme as a one-level scheme.15

Definition 3 A reward scheme R is said to be a one-level scheme if aRτ = 0 and bRτ = 0

for every τ > 1.

Theorem 1 Let q = 0. There exists no IC one-level scheme R such that π (R) > 0.

In a one-level scheme’s induced game, each distributor’s payoff depends only on the

number of licenses that he sells. The proof of Theorem 1 shows that agents who

understand the other agents’ average behavior do not overestimate their own ability

to sell licenses by much, if at all.16 The main challenge in the proof is to show that, in

14Full proofs appear in an earlier version of this paper, in which the alternative analogy classes were
employed (Antler, 2018).

15We include the sales commissions in the definition of one-level schemes for the sake of completeness.
16In the online appendix, we discuss the robustness of this result to other sources of overoptimism

such as heterogeneous prior beliefs and extrapolation from biased samples.
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any conjectured ABEE, the last entrant who is supposed to purchase a license cannot

“analogy-based” expect to sell more than one license (which, if the scheme is IC, is a

necessary condition for him to purchase a license).

To get a clear intuition of the proof, suppose for a moment that p = 0 such that

the distributors cannot access their successors’ successors. Moreover, assume that the

agents purchase licenses in an ABEE and that their ABEE play is symmetric. Since

the likelihood of meeting new entrants decreases as time progresses, there is a period t

such that each agent who receives an offer to purchase a license up to t accepts it and

each agent who receives such an offer after t rejects it. Nonetheless, the distributors

continue making offers after period t as they wrongly believe that the other agents

might accept them. Denote the expected number of offers that each distributor makes

after period t by v. Each offer that is accepted at t′ ≤ t results in a distributor who, in

expectation, makes v offers that are rejected after period t. Hence, the agents’ analogy-

based expectations, which are the proportion of accepted offers, cannot exceed 1
1+v

and

the t-th entrant cannot analogy-based expect to sell more than v
1+v

licenses.

When p > 0, there is an additional effect that is worth mentioning: the t-th entrant

underestimates the number of offers that he will make (i.e., he believes that he will

make ṽ ≤ v offers). To grasp this effect, suppose that the t-th entrant, agent i, makes

an offer to an agent j in period t′ > t. This offer will be rejected by j as it is made after

period t. If j is talkative, then, after he rejects the offer, he will refer his successors to i

who will make them some additional offers. Agent i underestimates the likelihood that

j will reject his offer and refer other agents to him as he thinks that j accepts offers

with probability β1 regardless of their timing. Thus, when p > 0 (i.e., when agents

may be talkative), the t-th entrant expects to sell fewer than v
1+v

licenses.

We wish to stress that Theorem 1 does not depend on the subtleties of the network

formation process (e.g., the finite number of periods or the assumption that only one

agent enters the game in each period) or on the stationarity of the rewards. Rather, it

relies on the existence of a period from which point onward the agents do not purchase

licenses. As long as the number of entrants in each period is nonincreasing as time

progresses from some point in time, such a period will exist in every ABEE and the

result of Theorem 1 will hold.

So far, we have shown that the SO cannot sustain a pyramid scam by means of

a one-level scheme. We shall now provide necessary and sufficient conditions under

which he can sustain such a scam by means of a reward scheme that compensates the
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distributors for their recruits and the recruits of other members of their downlines.

Theorem 2 Fix q = 0. There exists a number n? such that for every n > n? there

exists a number p? (n) ∈ [0, 1) such that:

1. If p ≤ p? (n), then there exists an IC reward scheme R such that π (R) > 0.

2. If p > p? (n), then there exists no IC reward scheme R such that π (R) > 0.

Theorem 2 establishes that the SO can sustain a pyramid scam if both n is suffi-

ciently large and p is sufficiently small. The talkativeness parameter p can be inter-

preted as a property of the product that disguises the underlying scam. A high value of

p corresponds to contagious (or unique) products in the sense that people are excited

to talk about them with their friends and acquaintances. Theorem 2 shows that an SO

who wishes to initiate a pyramid scam will prefer to disguise it by means of a product

that does not provoke such word-of-mouth advertisement.

Before we discuss the role that p plays in this result, it is useful to provide some

intuition of the existence result in Theorem 2.1. This intuition resembles the one

behind the ABEE analysis of the finite-horizon centipede game (Jehiel, 2005), which

we shall discuss in Section 4. The present setting is not stationary and this leads to

nonstationary ABEE behavior, as the agents accept offers until some period t (if at all)

and reject offers that arrive later. A “rational” economic agent will not join the pyramid

in period t, knowing that in the later stages of the game it is no longer beneficial to

purchase a license. However, the analogy-based reasoners in our model view the other

agents’ behavior as if it were time-invariant: each agent i wrongly believes that the

other agents always accept offers with the average probability β1, even when it is no

longer beneficial to join the pyramid. This overoptimistic belief is what makes the

agents join the pyramid in the hope of benefiting at the expense of the future entrants.

The fact that the talkativeness parameter has a negative effect on the SO’s ability to

sustain a pyramid scam may not be intuitive at first glance. Observe that the larger p

is, the better the distributors’ access to their successors’ successors, which allows them

to enjoy a larger potential clientele. This may suggest that p has a positive effect on

the agents’ willingness to participate in a pyramid scam. However, p has an additional

negative effect on the agents’ “feedback” (i.e., their analogy-based expectations), which

may not be as transparent as the above-mentioned positive effect.

In order to grasp the intuition for the negative effect, note that, in equilibrium,

the agents accept offers to join the pyramid early in the game and reject such offers in
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the game’s later stages. This implies that the ratio of non-distributors to distributors

is higher in the later stages of the game such that, compared to the early entrants,

agents who enter late in the game are far more likely to encounter a non-distributor.

The higher p is, the more likely each non-distributor is to be talkative and refer the

late entrants whom he meets to a distributor who will make them an offer (which they

will reject, as it is no longer beneficial to join the pyramid). In conclusion, a higher p

implies that a larger number of offers are made late in the game and, since these offers

are rejected, a higher value of p worsens the agents’ analogy-based expectations to the

extent that, when p is high, the SO cannot sustain a pyramid scam.

In light of the existence result of Theorem 2, it is natural to ask what is the minimal

number of levels of the distributors’ downlines that the compensation must be made

contingent on for a pyramid scam to be sustained. Theorem 3 provides conditions under

which the SO can sustain a pyramid scam by means of a two-level reward scheme (i.e.,

a scheme R such that aRτ = 0 and bRτ = 0 for every τ > 2).

Theorem 3 Fix q = 0. There exists a number n?? ≥ n? such that for every n > n??

there exists a number p?? (n) ∈ [0, 1) such that if p ≤ p?? (n), then there exists an IC

two-level scheme R such that π (R) > 0.

Unlike one-level schemes, two-level schemes require prospective participants to as-

sess not only their own ability to recruit but also their recruits’ respective ability. The

agents’ misspecified model of the other agents’ behavior leads them to mispredict both

of these variables. As we showed in Theorem 1, the agents do not overestimate their

own ability to recruit by much (and, therefore, the SO cannot overcome the incentive-

compatibility constraint and sustain a pyramid scam by means of a one-level scheme).

In a similar manner, the agents do not overestimate their recruits’ ability to sell licenses

by much. While each of these two prediction errors is small, their accumulation allows

the SO to overcome the incentive-compatibility constraint and sustain a pyramid scam.

2.3 A mixture of fully and boundedly rational agents

So far, we have assumed that all of the agents are either fully rational or analogy-based

reasoners. Let us examine a population that consists of a mixture of the two types. We

assume that dαne of the agents are analogy-based reasoners and that n− dαne of the

agents are fully rational. As in Section 2.2, the analogy-based reasoners best respond

to analogy-based expectations that are consistent with the profile of strategies played
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in equilibrium. The rational agents best respond to the equilibrium play using the

accurate model of the world and, therefore, we expect them to reject offers to join a

pyramid in instances where analogy-based reasoners are happy to accept them. Clearly,

the impossibility results of Theorems 1 and 2.2 hold for every α > 0. Proposition 2

shows that the positive results of Theorems 2.1 and 3 hold for every α > 0.

Proposition 2 Fix q = 0 and an arbitrary α ∈ (0, 1]. There exists a number n (α)

such that for every n > n (α), there exists a number p̂ (n) ∈ [0, 1) such that if p ≤ p̂ (n),

then there exists an IC two-level scheme R such that π (R) > 0.

Proposition 2 establishes that the SO can sustain a pyramid scam even in the

presence of fully rational agents. The intuition is that by taking n to be large it is

always possible to “compensate” for the existence of the fully rational agents who reject

offers in instances in which the analogy-based reasoners accept them.

The presence of fully rational agents lowers the proportion of accepted offers, i.e.,

the analogy-based reasoners’ expectations. This effect makes it more difficult for the

SO to sustain a pyramid scam. In fact, for any fixed population size n̄, if α > 0 is

sufficiently low, the SO cannot sustain such a scam regardless of the value of p. Thus,

the presence of fully rational agents can prevent the boundedly rational agents from

participating in a pyramid scam.

When α < 1 is sufficiently close to 1, there are cases in which rational agents

purchase licenses in equilibrium. It should be noted that fully rational agents cannot be

“scammed”: when they participate in a pyramid scam, they make a positive expected

payoff at the expense of the analogy-based reasoners who, on average, incur losses.

2.4 Example: A multilevel scheme maximizes the SO’s profit

This example illustrates that maximizing the SO’s expected ABEE profit may require

compensating the distributors based on strictly more than two levels of recruitments.

We shall say that an IC scheme R is profit-maximizing if there exists no IC scheme

R′ such that π (R′) > π (R). Note that due to their risk neutrality, both the agents

and the SO can benefit from raising the stakes of the contract (i.e., multiplying the

commissions and the entry fees by a constant γ > 1 can increase the SO’s expected

profit without changing the set of ABEEs). To bound these stakes such that a profit-

maximizing scheme will exist, we shall modify the model by assuming that the maximal

amount that each agent can pay for a license is B > 0. Under this assumption, if the
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SO can sustain a pyramid scam, then every profit-maximizing scheme charges a fee of

B. Without loss of generality, we shall restrict our attention to such schemes.

To simplify the analysis, we set p = 0 such that each distributor finds it optimal to

make an offer to every agent that he meets. ABEEs that maximize the SO’s expected

profit are fully characterized by a period k < n such that the agents accept every offer

up to period k and reject every offer made after period k. At the optimum, the SO

does not make offers after period k as such offers are rejected and negatively affect

the agents’ analogy-based expectations. In expectation, each distributor interacts with∑n
t=k+1

1
t

agents after period k. Thus, each accepted offer results in a distributor

who, in expectation, makes
∑n

t=k+1
1
t

offers that are rejected after period k. Hence,

β1 = 1
1+

∑n
j=k+1

1
j

and β2 = 1 are consistent with the players’ behavior at the optimum.

Fix a profile of strategies σ that satisfies the above properties. Note that σ pins

down the agents’ analogy-based expectations and the SO’s expected revenue, which

is the expected number of distributors multiplied by B. The profile σ can be part of

an ABEE in multiple IC schemes’ induced games. We shall look for the scheme that

minimizes the SO’s costs (given σ) in this class of schemes.

The SO’s dual problem is to minimize κ1a
R
1 + κ2a

R
2 + ...+ κn−ka

R
n−k subject to the

incentive-compatibility constraints that aR1 , ..., a
R
n−k ≤ B, subject to aR1 , ..., a

R
n−k ≥ 0,

and subject to the k-th entrant being willing to pay B+ c for a license (i.e., σ being an

ABEE of Γ (R)). Each weight κτ represents the expected cost that is associated with

an increase in the commission aRτ given σ. The k-th entrant’s willingness to pay for a

license is
∑n−k

τ=1 β
τ

1 lτa
R
τ , where lτ is the expected number of agents at the τ -th level of

the subtree of G rooted at the k-th entrant. To find an IC profit-maximizing scheme,

it is sufficient to find a cost-minimizing scheme for every profile σ that satisfies the

above properties and compare the SO’s expected profit in the corresponding ABEEs.

For n = 100, B = 1, and c = 0, the first four entrants purchase a license in the

ABEE in which the SO’s expected profit is maximized (i.e., k = 4) and every profit-

maximizing scheme R pays aR1 = 0.823 and aRτ = 1 for every τ ∈ {1, ..., n− k}. The

maximal expected profit that the SO can obtain in an ABEE is 1.922 in this case. If

the SO were restricted to using a two-level scheme instead of a multilevel one, then the

maximal expected profit he could obtain in an ABEE would be 1.864. Thus, the SO

is strictly better off using a multilevel scheme rather than a two-level one.
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3 Multilevel Marketing of Genuine Goods (q > 0)

In this section, we explore a “legitimate” world in which the good is intrinsically valued

such that the SO can benefit from the distributors’ retail sales. We analyze two settings

that correspond to the ones that we studied in Section 2. In Section 3.1, the agents

do not err, such that the SO cannot benefit from deceptive practices. In Section 3.2,

the agents are boundedly rational and the SO can benefit from their mistakes as well

as from their sales. In both settings, we focus on two controversial components of the

reward schemes, namely, entry fees and recruitment commissions. We examine whether

or not the SO must use these components in order to maximize his expected profit.

3.1 MLM with fully rational agents

We set q > 0 in order to capture that the good is genuine and we use subgame perfect

Nash equilibrium (SPE) to solve the model, as the agents are fully rational. As in the

example in Section 2.4, we say that an IC reward scheme R is profit-maximizing if

there exists no IC reward scheme R′ such that π (R′) > π (R). Theorem 4 shows that if

the SO produces a genuine good and faces fully rational agents, then profit-maximizing

schemes need not charge entry fees or pay recruitment commissions.

Theorem 4 Let c > 0. There exists an IC profit-maximizing scheme R? such that

φR
?

= 0 and aR
?

τ = 0 for every τ ≥ 1.

The proof shows that for every IC scheme R, there exists an IC scheme R? that does

not pay recruitment commissions, does not charge entry fees, and where π (R?) ≥ π (R).

Under R?, whenever a distributor interacts with an agent he is indifferent between

recruiting him and not doing so. This indifference has two implications. First, in

expectation, each distributor is paid as if he does not recruit at all. Each distributor can

secure this payment in Γ (R) by selling the good without recruiting as bR
?

1 ≤ bR1 . Hence,

the SO’s expected transfer to each distributor is less under R? than it is under R. The

second implication of the distributors’ indifference is that any profile of strategies that

constitutes an SPE of Γ (R) also constitutes an SPE of Γ (R?). Thus, the scheme R?

sustains the SO’s preferred SPE behavior in Γ (R) while maintaining a lower overhead.

A scheme that charges entry fees or pays recruitment commissions cannot be profit-

maximizing except in a few extreme cases (e.g., when p = 1, the SO’s expected profit

is maximized by selling directly and every IC scheme is profit-maximizing). In fact, if

an SPE of Γ (R) results in two or more distributors and R charges entry fees or pays
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recruitment commissions, then bR
?

1 < bR1 and π (R?) > π (R). Thus, in any case where

the SO uses at least two distributors, schemes that charge entry fees or pay recruitment

commissions are not profit-maximizing

The compensation under R? is based on more than two levels of retail sales. The

commission bR
?

1 is meant to cover the cost c. The purpose of bR
?

2 is to incentivize

information propagation. This incentive is necessary since a distributor who recruits an

agent is basically recruiting a competitor, as he loses access to that agent’s successors.

However, bR
?

2 may not suffice to incentivize recruitment of new competitors since it

does not compensate the distributors for the fact that these competitors may recruit

additional competitors themselves. For example, a distributor d who recruits an agent

i loses access to i’s successors. As long as i does not recruit anyone, bR
?

2 compensates

d for these losses. However, if i recruits an additional agent j, then the recruitment

reduces i’s sales as he can no longer sell to j’s successors and this may negatively affect

d’s reward, which, in a two-level scheme, is based on i’s sales but not on j’s sales. The

higher-order commissions (e.g., bR
?

3 ) compensate the distributors for the fact that their

recruits may recruit new recruits (who may in turn recruit, and so on).

So far in this section, we have shown that recruitment commissions and entry fees

are inconsistent with profit maximization when the good is intrinsically valued and the

agents are fully rational. We now complete the analysis by exploring a setting in which

the SO has two potential sources of profit: selling the good and scamming the agents.

3.2 MLM with genuine goods and analogy-based reasoners

In this section, the agents are boundedly rational such that the SO can exploit them.

Unlike in Section 2.2, we shall assume that the agents are willing to pay for the good

(i.e., q > 0). As in Section 3.1, we shall examine whether or not profit-maximizing

schemes pay recruitment commissions or charge entry fees.

We shall simplify the analysis by assuming that p = 0 such that the distributors do

not have access to their successors’ successors. To guarantee that profit-maximizing

schemes exist, we shall assume, as in the example in Section 2.4, that each agent cannot

pay more than B > 0 for a license. Unlike in the example, profit-maximizing schemes

do not necessarily charge an entry fee of B.

Proposition 3 shows that even though the agents are vulnerable to deceptive prac-

tices, when the potential gains from sales are large, schemes that pay recruitment

commissions or charge entry fees are not profit-maximizing.
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Proposition 3 Fix q > 0, c > 0, and p = 0. There exists a number n̂ such that if

n > n̂ and R is an IC profit-maximizing scheme, then φR = 0 and aRτ = 0 for every

τ ≥ 1.

When n is large, the potential gains from trade are large as well, which makes the

distributors more valuable to the SO. The first part of the proof confirms this intuition.

It shows that for any pair, ε > 0 and ρ > 0, there is a number n (ε, ρ) such that, for

every n > n (ε, ρ), every ABEE that maximizes the SO’s expected profit induces a

number of distributors greater than ρ with probability greater than 1− ε.
The second part of the proof examines the SO’s “dual” problem: finding an IC

scheme that minimizes the SO’s expected cost given an entry fee φ, a price η = 1,

and a profile σ, and that is subject to the requirement that σ be part of an ABEE of

the scheme’s induced game. Denote a scheme that solves this problem for φ and σ by

R (φ, σ). The proof shows that π (R (0, σ)) > π (R (φ, σ)) if φ > 0 and the number of

agents who purchase a license under σ is sufficiently large. Thus, charging entry fees is

inconsistent with profit maximization when many agents purchase a license. Hence, for

large values of n, IC schemes that charge entry fees (or pay recruitment commissions,

which require charging entry fees) are not profit-maximizing.

Let us consider the main effects of charging an entry fee on the SO’s expected

profit. First, the fee raises the SO’s revenue per distributor. Second, it raises the

cost of becoming a distributor φ + c such that maintaining the agents’ willingness to

purchase a license requires raising the commissions and the SO’s costs. When the

number of distributors is large, the second effect dominates the first effect as the SO

has to pay multiple commissions for the bulk of the recruitments and sales (such that

raising the commissions to compensate the distributors for the higher fee becomes very

costly). Hence, if the number of distributors is likely to be large, the SO’s expected

profit is maximized by means of a reward scheme that does not charge entry fees.

4 Concluding Remarks

Legitimate MLM and fraudulent pyramid scams are two widespread phenomena. Ex-

perts and potential participants often find it hard to distinguish between them. We

developed a model that allows us to draw the boundary between the two based on

observable properties of their underlying compensation structures. We provided neces-

sary and sufficient conditions under which it is possible to sustain a pyramid scam even
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though the potential participants’ beliefs are statistically correct. The main result of

the paper makes a connection between dubious “passive income” promises and pyramid

scams by showing that every pyramid scam has a reward scheme that compensates the

participants for at least two levels of recruitments. That is, schemes that compensate

the participants only for people whom they recruit to the sales force cannot sustain a

pyramid scam, but multilevel schemes can sustain such a scam.

Pyramid scams rely on two components, namely, recruitment commissions and

entry fees. We established that legitimate companies (i.e., ones that promote genuine

goods) that face fully rational consumers cannot benefit from basing their compensation

on these pyramidal components. In such instances, it is possible to maximize the

company’s expected profit while compensating the sales force only for sales. In fact,

even when such a company faces boundedly rational agents who are vulnerable to

deceptive practices, it may find it suboptimal to use these pyramidal components if

the demand for its product is sufficiently large.

It is well known that in the unique SPE of the finite-horizon centipede game, players

always stop even though they can benefit if they continue for a few more rounds. Jehiel

(2005) resolves this paradox by showing that it is possible to sustain an ABEE in which

players continue.17 If the game is sufficiently long, then under the coarsest partition

there exists an ABEE in which the players continue until the last round. Such an ABEE

exists even if only one of the players has a coarse reasoning as the players generate

surplus along the path of play. There are several other differences between the games

analyzed by us in this article and the centipede game analyzed by Jehiel that not

only allow us to answer questions related to MLM, but also lead us to fundamentally

different results, such as our impossibility results.

The effect of p on the agents’ expectations, and the restrictions on the payoff func-

tion that result both from incentive compatibility and from the requirement that the

SO’s expected profit be positive, may prevent the SO from sustaining a pyramid scam

even if the game is arbitrarily long (e.g., if p = 1). Moreover, these restrictions impose

an interesting structure on the participants’ compensation when a scam is sustainable.

We shall conclude by discussing a few extensions and related models.

Incentive compatibility

Throughout the paper we assumed that the SO uses IC schemes to prevent distributors

17Moinas and Pouget (2013) obtain a similar result for the capped bubble game, which is a modifi-
cation of the centipede game in which some of the players do not know their place in the sequence.

22



from manipulating him by creating fictitious players. The incentive constraint prevents

these manipulations when the SO can verify the identity of any distributor who wishes

to be paid (in practice, to be paid, MLM distributors are often required to identify

themselves). An SO who cannot verify the distributors’ identities may wish to use

a reward scheme R such that
∑n

τ=1 a
R
τ ≤ φR and

∑n
τ=1 b

R
τ ≤ ηR to prevent each

distributor from creating a tree of fictitious recruits and collecting the commissions

that all the nodes in the tree would be eligible for. Below, we extend the network

formation model and illustrate that, even under the stronger incentive constraint, one-

level schemes cannot sustain a pyramid scam whereas two-level schemes can sustain

such a scam.

Extension: A limited number of recruitment opportunities

Individuals who join a pyramid may find it natural to first approach their immediate

friends as approaching strangers is perhaps more difficult. Such individuals exhaust

their best opportunities to recruit new members to the pyramid soon after they join.

In order to roughly approximate this, we modify the network formation model such

that each player can meet new agents only in the first x > 0 periods after he enters the

game (i.e., the time-t entrant can meet new agents in periods t+1, ..., t+x). Moreover,

we assume that in each period t ∈ {1, ..., n}, µt > 0 new agents enter the game. As

in the baseline model, the player who meets the entrant is drawn by nature uniformly

at random. Observe that in this network formation model, agents do not necessarily

meet fewer agents than their successors.

We now demonstrate that, as in the baseline model of Section 2, one-level schemes

cannot sustain a pyramid scam if aR1 ≤ φR. Subsequently, we shall show that two-level

schemes can sustain such a scam when aR1 + aR2 ≤ φR.

Set q = p = 0 and x = 1 and consider a profile in which every agent who receives

an offer up to period k < n accepts it, every agent who receives an offer after period k

rejects it, and every distributor who meets an agent makes him an offer. Since p = 0,

no offer is made after period k+1. Note that every symmetric ABEE in which the SO’s

expected profit is strictly positive has this structure when p = 0 and x = 1. Under this

profile, µ1 + ... + µk+1 offers are made and µ1 + ... + µk of them are accepted. Hence,

β1 = µ1+...+µk
µ1+...+µk+1

is consistent with this profile. Let µz/µz−1 = min {µ2/µ1, ..., µk+1/µk}
and consider an agent i who purchases a license in period z − 1. Agent i believes

that, in expectation, he will sell µz
µz−1

β1 ≤ µ2+...+µk+1

µ1+...+µk+1
< 1 licenses, which, if R is an IC

one-level scheme, will not cover the cost of becoming a distributor.
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The profile that we described above can be part of an ABEE of a two-level scheme’s

induced game. For example, suppose that there are three periods, k = 1, µ1 = 1,

µ2 = 4, and µ3 = 40. As we calculated above, β1 = 0.2. An agent who enters the

game in period 1 analogy-based expects to recruit β1µ2 = 0.8 distributors and analogy-

based expects that these distributors will recruit β
2

1
µ3
µ1

= 1.6 distributors. If R pays

aR1 = aR2 = 0.5φR, an agent who enters the game in period 1 analogy-based expects a

reward of 1.2φR − φR − c. An agent who enters the game in period 2 analogy-based

expects to sell β1
µ3
µ2

= 2 licenses and, therefore, he analogy-based expects a reward of

−c such that he finds it optimal not to purchase a license. Thus, for large φR, we have

an IC two-level scheme R (that satisfies aR1 + aR2 ≤ φR) such that π (R) > 0.

Gradual arrival

The gradualness of the arrival of agents plays a key role in the model as it affects the

number of opportunities that the agents have to recruit. If the agents arrive “too fast”

then there is not enough variation in the agents’ expected number of successors and

so the SO cannot sustain a pyramid scam. For example, in the extreme case in which

all of the agents enter the game in the same period, none of them could recruit and,

therefore, none of the agents would be willing to participate in the pyramid.

Uncertainty about arrival time

Abreu and Brunnermeier (2003) study a model in which a finite process creates a

bubble that bursts after a synchronized attack by a sufficient number of investors or

at the end of the process. The investors in their model become aware of the bubble

sequentially, and face uncertainty about the time at which the bubble started and how

many other investors are aware of the bubble. They show that the bubble may persist

long after all of the investors are aware of its existence.

Uncertainty about arrival time cannot lead to participation in a pyramid scam when

there are no deviations from the classic rational expectations model. The reason that

such uncertainty sustains a bubble in Abreu and Brunnermeier’s model is that, unlike

a pyramid scam, their trading game is not a zero-sum game. Underlying the bubble

in their model is an exogenous process that represents behavioral traders. Rational

investors who ride the bubble profit at the expense of those behavioral traders, unlike

pyramid-scam participants who, on average, incur losses.

What would be the implications of assuming that agents are uncertain about the

time at which they enter the game, in addition to assuming that their reasoning is
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coarse? Adding a small noise to the model would not change the essence of our main

results. However, if the agents’ information about their time of entry were to become

very coarse, then it would be impossible for the SO to sustain a pyramid scam. The

reason for this, loosely speaking, is that when an agent is completely ignorant about

his position in the game tree, best responding to the other agents’ average behavior

(as in an ABEE) is a relatively small mistake.
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Appendix A: Proofs

Proof of Proposition 1. Assume by way of contradiction that there exists an IC

reward scheme R such that π (R) > 0. Since q = 0, π (R) > 0 implies that φR > 0

and that there exists a subgame perfect Nash equilibrium (SPE) of Γ (R) in which at

least one of the agents purchases a license. Denote by k the last period in which an

agent purchases a license in any SPE of Γ (R). Since R is IC, ηR = 0 implies that

bR1 = bR2 = ... = 0. As q = 0, the agents do not purchase the good if ηR > 0. This leads

to a contradiction as, in every SPE, the k-th entrant obtains a payoff of −c− φR < 0

if he purchases a license and, therefore, he must refrain from doing so.

Proof of Theorem 1. The proofs of Theorems 1 and 2 rely on the following lemma.

Lemma 1 Let (σ, β) be an ABEE in which every agent rejects every offer that he

receives after period k?, where k? ≤ n − 1. In (σ, β), every distributor who interacts

with an agent after period k? makes him an offer.

Proof. Consider (σ, β). Since β1a
R
1 ≥ 0, every distributor who interacts with an agent

in period n makes him an offer. Consider t ∈ {k?, ..., n− 1} and assume that, in every

period t′ > t, every distributor who interacts with an agent makes him an offer. To

prove the lemma by induction, we need to show that every distributor who interacts

with an agent in period t makes him an offer.

Consider an agent i who holds a distribution license at the end of period t. In

expectation, i will meet
∑n

j=t+1
1
j

agents after period t. Denote by S the set of these

agents and their successors in G. By the induction hypothesis, i makes an offer to

every j ∈ S with whom he interacts. Since t ≥ k?, every offer that i makes after period

t is rejected. Thus, i interacts with j ∈ S if and only if ψl = 1 for every agent l on

the directed path connecting i and j, an event that occurs with probability pdG(i,j)−1.

Hence, the expected number of offers that i makes after period t is at least18 vt, where

vt =
n∑

j=t+1

1

j
+ p

n−1∑
j=t+1

n∑
j′=j+1

1

jj′
+ p2

n−2∑
j=t+1

n−1∑
j′=j+1

n∑
j′′=j′+1

1

jj′j′′
+ ... (1)

+...+ pn−t−1 1

(t+ 1)× (t+ 2)× ...× (n− 1)× n
18If agent i entered the game before period t, then, in addition to the offers that he makes to the

members of S after period t, he can make offers to agents who join Gi − S after period t.
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Note that every accepted offer results in a distributor and that no offer is accepted

after period t. Thus, for every accepted offer, there are, in expectation, at least vt

rejected offers. Hence, the proportion of accepted offers, β1, cannot exceed 1
1+vt

.

A distributor j is said to be a member of the λ-th level of distributor i’s downline if

j ∈ Gi and there are λ− 1 distributors on the directed path connecting i to j. Denote

by lλ,t the analogy-based expected (i.e., assuming that after period t every distributor

makes offers with probability β2 and each agent accepts offers with probability β1)

number of distributors in the λ-th level of the downline of an agent who purchases a

license in period t. Set l0,t := 1 and note that lλ,t is weakly decreasing in t.

Suppose that a distributor i interacts with an agent j in period t. If i does not

make an offer to j (or if j rejects i’s offer) and ψj = 1, then i will be able to make

offers to j’s successors. By the induction assumption, i will make an offer to each of

j’s successors with whom he interacts. Note that i believes that each of these offers

will be accepted with probability β1 ≥ 0. Thus, i analogy-based expects to make pv̂t

offers to j’s successors if he does not sell a license to j, where

v̂t =
n∑

j=t+1

1

j
+ (1− β1) p

n−1∑
j=t+1

n∑
j′=j+1

1

jj′
+ (1− β1)2 p2

n−2∑
j=t+1

n−1∑
j′=j+1

n∑
j′′=j′+1

1

jj′j′′
+ ... (2)

...+ (1− β1)n−t−1 pn−t−1 1

(t+ 1)× (t+ 2)× ...× (n− 1)× n
≤ vt

Hence, i analogy-based expects to sell pv̂tβ1 ≤ vt
1+vt

< 1 licenses to j’s successors if

he does not sell a license to j. Each sale to j’s successors increases the analogy-based

expected number of distributors on the λ-th level of i’s downline by less than lλ−1,t

since lλ−1,t is weakly decreasing in t. A sale to j increases the analogy-based expected

number of distributors on the λ-th level of i’s downline by lλ−1,t. Hence, selling a license

to j results in a weakly greater expected number of distributors on every level of i’s

downline compared to not selling a license to j. Thus, selling a license to j results in

a weakly greater expected reward compared to not selling a license to j.

Assume to the contrary that there exists an IC one-level scheme R such that

π (R) > 0. Since π (R) > 0 and q = 0, it follows that φR > 0 and that an ABEE

(σ, β) of Γ (R) in which the agents purchase licenses exists. Denote by t the last pe-

riod in which an agent purchases a license in (σ, β). By Lemma 1, every agent who

purchases a license in period t makes an offer to every agent with whom he interacts.

In expectation, such an agent makes vt offers, where vt is given in (1). As we showed
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in Lemma 1, β1 ≤ 1
1+vt

. The t-th entrant analogy-based expects to make v̂t offers and

to sell v̂tβ1 licenses if he purchases a license, where v̂t is given in (2). Since R is an IC

one-level scheme and q = 0, the t-th entrant analogy-based expects a payoff of at most

v̂tβ1a
R
1 − φR ≤ vt

1
1+vt

φR − φR < 0 if he becomes a distributor. This is in contradiction

to the optimality of purchasing a license in period t.

Proof of Theorem 2. The proof consists of three parts. First, we show that if p = 1,

then the SO cannot sustain a pyramid scam regardless of the value of n. The second

part of the proof shows that if the SO can sustain a pyramid scam given n and p? > 0,

then he can do so given n and any p ≤ p?. The third part of the proof shows that there

exists n? such that if n > n? and p = 0, then the SO can sustain a pyramid scam.

Part 1. Let p = 1 and assume by way of contradiction that there exists an IC

scheme R such that π (R) > 0. Since π (R) > 0 and q = 0, it follows that φR > 0 and

that an ABEE (σ, β) of Γ (R) in which the agents purchase licenses exists. Denote by t

the last period in which an agent purchases a license on the equilibrium path of (σ, β).

Consider an agent i who buys a license in period t. By Lemma 1, i makes an offer to

every agent with whom he interacts. In expectation, i makes vt offers, where vt is given

in (1). As we showed in the proof of Lemma 1, β1 ≤ 1
1+vt

. Plugging p = 1 into (1)

yields vt = n−t
t+1

. Since R is IC and q = 0, agent i’s payoff cannot exceed sφR−φR, where

s is the number of i’s successors who purchase a license. Bhattacharya and Gastwirth

(1984, p. 531) show that the expected number of successors of the t-th entrant is n−t
t+1

.

This contradicts the optimality of purchasing a license in period t as β1
n−t
t+1

< 1.

Part 2. Fix n? and p? > 0, and suppose that there exists an IC scheme R such that

π (R) > 0. Since π (R) > 0 and q = 0, there exists an ABEE (σ, β) of Γ (R) in which the

agents purchase licenses. We shall describe a profile σ′ and an IC scheme R′ such that

the fact that (σ, β) is an ABEE of Γ (R) implies that σ′ is part of an ABEE of Γ (R′)

that induces a strictly positive expected profit for the SO when p = p?. Subsequently,

we shall show that σ′ is part of such an ABEE of Γ (R′) for every p < p?.

Denote by k the last period in which an agent purchases a license in (σ, β). By

Lemma 1, under σ, every distributor makes an offer to every agent with whom he

interacts after period k. In expectation, an agent who purchases a license in period k

makes vk (p?) offers, where vk (p?) is given in (1) for t = k and p = p? (we write vk (p)

explicitly as a function of p as we shall vary the value of p later on). As we showed in

the proof of Lemma 1, consistency implies that β1 ≤ 1
1+vk(p?)

.

Consider a profile of strategies σ′ in which: (i) the SO makes an offer to every
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agent with whom he interacts in period k and never makes offers in other periods, (ii)

every distributor makes an offer to every agent with whom he interacts, and (iii) every

agent accepts every offer that he receives up to period k and rejects every offer that

he receives after period k. Denote the analogy-based expectations that are consistent

with σ′ when p = p? by β′1 and β′2. Clearly, β′2 = 1.

Consider an arbitrary agent i who purchases a license in period k. According to

σ′, i makes an offer to every agent with whom he interacts. In expectation, he makes

vk (p?) offers after period k, where vk (p?) is given in (1) for t = k and p = p?. Thus,

under σ′, every offer that is made in period k is accepted and results in a distributor

who, in expectation, makes vk (p?) offers. Since no offer is made prior to period k and

the SO does not make offers after period k, it follows that β′1 = 1
1+vk(p?)

≥ β1.

Let R′ be a scheme such that aR
′

τ = xφR
′

and bR
′

τ = 0 for every τ ≥ 1, x ≤ 1, and

φR
′
= φR. Since x ≤ 1, R′ is IC. Given σ′, the SO’s expected profit in Γ (R′) is at least

φR

k
. We now show that there exists x ≤ 1 such that (σ′, β′1, β

′
2) is an ABEE of Γ (R′).

Consider the distributors’ behavior. For every x ≤ 1, each distributor i’s objective

in Γ (R′) is to maximize the expected number of his successors who purchase a license.

Since β′2 = 1, making an offer to every agent with whom i interacts maximizes this

number according to i’s analogy-based expectations.

Consider the decision whether or not to buy a license. It suffices to find x ≤ 1 such

that the k-th entrant is indifferent whether to buy a license or not as he expects a greater

(respectively, smaller) payoff than any agent who buys a license after (respectively,

before) period k. Since (σ, β) is an ABEE of Γ (R), the k-th entrant finds it optimal to

buy a license given R, β1, and β2. Since R is IC, for a sufficiently large x ≤ 1, the k-th

entrant finds it optimal to buy a license given R′, β1, and β2. Given R′, increasing β1

and β2 to β′1 and β′2 only raises the k-th entrant’s payoff according to his analogy-based

expectations. Thus, we can adjust x ≤ 1 such that σ′ is part of an ABEE of Γ (R′).

Set n? and an arbitrary p < p?. To complete the proof, we shall show that there

exists x ≤ 1 such that σ′ is part of an ABEE of Γ (R′) for p. Note that the optimality

of the distributors’ behavior under σ′ and the lower bound for the SO’s expected profit

do not depend on the value of p. Hence, all we need to show is that there exists x ≤ 1

such that the k-th entrant finds it optimal to purchase a license given p (it will then

be easy to adjust x such that the later entrants do not purchase a license).

Each distributor’s reward in Γ (R′) is linear in the number of his successors who

buy a license. As σ′ is an ABEE of Γ (R′) for p = p?, the k-th entrant finds it optimal
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to buy a license given x ≤ 1 and p?. To complete the proof, we shall show that the

expected number of the k-th entrant’s successors who buy a license according to his

analogy-based expectations that are induced by σ′ and p is weakly decreasing in p.

Let lz = E[| {j ∈ Gik : dG (ik, j) = z} |] be the expected number of agents in the

z-th level of the subtree of G rooted at the k-th entrant. For example, l1 =
∑n

j=k+1
1
j

and l2 =
∑n−1

j1=k+1

∑n
j2=j1+1

1
j1j2

. Note that vk (p) = l1 + pl2 + p2l3 + ... + pn−k−1ln−k

and that β′1 (p) = 1
1+vk(p)

is consistent with σ′ and p. The expected number of the k-th

entrant’s successors who purchase a license given p, σ′, β′1 (p) = 1
1+vk(p)

, and β′2 = 1 is

l1
(1 + vk (p))

+
l2 (1 + pvk (p))

(1 + vk (p))2 +
l3 (1 + pvk (p))2

(1 + vk (p))3 +
l4 (1 + pvk (p))3

(1 + vk (p))4 + ... (3)

The proof that the derivative of (3) w.r.t. p is negative appears in the Technical Results

section of the online appendix.

Part 3. This part of the proof shows that there exists n? such that if n > n? and

p = 0, then there exists an IC scheme R such that π (R) > 0. This part follows directly

from a more general result given in Proposition 2 and, therefore, its proof is omitted.

Proof of Theorem 3. Theorem 3 follows as a corollary of Proposition 2 for α = 1.

Proof of Proposition 2. Set p = 0 and choose an arbitrary α ∈ (0, 1]. Consider

a profile of strategies σ such that every analogy-based reasoner accepts (respectively,

every rational agent rejects) every offer that he receives in period t = 1, every agent

rejects every offer that he receives in each period t > 1, the SO makes an offer only

in period t = 1, and every distributor makes an offer to every agent with whom he

interacts. Under σ, the SO’s expected profit is dαne
n
φR. We shall find an IC scheme R

such that φR > 0 and σ is part of an ABEE of Γ (R).

Since every distributor makes an offer to every agent with whom he interacts, β2 = 1

is consistent with σ. As the SO’s period-1 offer is accepted by analogy-based reasoners

and rejected by fully rational agents, it follows that, in expectation, dαne
n

offers are

accepted in period 1. Each of them results in a distributor. Plugging t = 1 and p = 0

into (1) yields that each distributor makes, in expectation,
∑n

t=2
1
t

offers after period

1. Since all of these offers are rejected, β1 =
dαne
n

1+
dαne
n

∑n
t=2

1
t

is consistent with σ.

Consider an IC two-level reward scheme R such that φR > 0, aR1 = aR2 = xφR, x ≤ 1,

and bR1 = bR2 = 0. Since p = 0, under σ, every analogy-based reasoner i believes that,

as a distributor, he will make an offer to all agents j ∈ Gi such that dG (i, j) = 1 and

only to these agents. Since p = 0 and β2 = 1, agent i also believes that each agent j 6= i
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who purchases a license will make an offer to all agents l ∈ Gj such that dG (j, l) = 1

and only to these agents. Hence, an analogy-based reasoner who purchases a license

in period 1 believes that, in expectation, he will sell β1

∑n
t=2

1
t

licenses and that the

agents who buy these licenses will sell, in expectation, β
2

1

∑n−1
t=2

∑n
t′=t+1

1
tt′

licenses.

As the harmonic sum diverges, limn→∞ β1

∑n
t=2

1
t

= 1 and limn→∞ β
2

1

∑n−1
t=2

∑n
t′=t+1

1
tt′

= 1
2
. Thus, for a sufficiently large n, an analogy-based reasoner who purchases a license

at time t = 1 expects a payoff arbitrarily close to 3xφR

2
−φR− c. Since the likelihood of

meeting the new entrant decreases over time, he expects a smaller payoff if he purchases

a license at time t > 1. It is possible to choose x and φR such that it is optimal for

every analogy-based reasoner to purchase a license at time t = 1 and it is not optimal

to do so at any time t > 1. To complete the proof that σ is part of an ABEE of Γ (R)

note that, since p = 0, every distributor who meets an agent finds it optimal to make

him an offer (regardless of x). Moreover, fully rational agents find it optimal to reject

every offer as such agents correctly believe that they will not sell licenses.

Proof of Theorem 4. Consider an arbitrary IC scheme R such that19 ηR ∈ (0, 1].

Step 1 shows that there exists an IC scheme R? such that φR
?

= 0, aR
?

τ = 0 for every

τ ≥ 1, and π (R?) ≥ π (R). Step 2 shows that a profit-maximizing scheme exists.

Step 1. Let σ be an SPE of Γ (R) that induces an expected profit of π (R) for the

SO. If no agent purchases a license on the equilibrium path of σ, then π (R′) ≥ π (R)

for every scheme R′ as the SO can always refrain from selling licenses. Suppose that

there exists an agent who purchases a license on the equilibrium path of σ and let k

be the last period in which an agent purchases a license on that path.

For every t ≥ 1, if the t-th entrant purchases a license but does not sell licenses,

then, in expectation, he sells qvt units of the good, where vt is given in (1). Since

the k-th entrant does not sell licenses in σ, it follows that qvkb
R
1 ≥ c + φR. Note that

vt > vk for every t < k and that the optimality of the t-th entrant’s strategy implies

that he obtains an expected payoff of at least qvtb
R
1 − φR − c if he purchases a license.

Consider a scheme R? such that ηR
?

= ηR, qvkb
R?

1 = c, φR
?

= 0, and for every

τ ≥ 1, it holds that aR
?

τ = 0 and bR
?

τ = bR
?

1 pτ−1. Since qvkb
R?

1 = c ≤ c+ φR ≤ qvkb
R
1 , it

follows that bR
?

1 ≤ bR1 . As R is IC and bR1 ≥ bR
?

1 , it must be that R? is IC.

Under R?, each distributor j obtains an expected transfer of qpx−y−1bR
?

y+1 = qpx−1bR
?

1

for every potential sale to an agent i such that dG (j, i) = x and there are y distributors

on the path connecting j and i. Since this expression is independent of y, each distrib-

19If ηR 6∈ (0, 1], then no agent ever purchases a license in any SPE of Γ (R).
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utor j who interacts with an agent is indifferent between selling a license to him and

not doing so regardless of j’s beliefs about future play. Hence, in every SPE of Γ (R?),

if the t-th entrant purchases a license, then, in expectation, he will obtain commissions

of qvtb
R?

1 as if he were not selling licenses.

Since qvkb
R?

1 = c ≤ qvkb
R
1 − φR, it holds that qvtb

R?

1 ≤ qvtb
R
1 − φR for every t < k.

Hence, in expectation, given σ, the SO’s net transfers (i.e., commissions minus entry

fees) to a distributor who purchases a license in period t are weakly smaller under R?

than they are under R given that σ is played. Thus, given σ, the SO’s expected profit

in Γ (R?) is weakly greater than it is in Γ (R).

Since qvkb
R?

1 = c, every agent who enters Γ (R?) in each period t ≤ k (respectively,

t ≥ k) finds it optimal to purchase (respectively, not to purchase) a license in every SPE

of Γ (R?). Since each distributor who interacts with an agent in Γ (R?) is indifferent

between selling a license to him and not doing so, σ is an SPE of20 Γ (R?).

Step 2. Let Q be the (finite) set of IC schemes such that
bRτ+1

bRτ
= p for each τ ≥ 1,

bR1 = c
qvt

for some t ∈ {1, ..., n− 1}, φR = 0, ηR = 1, and aRτ = 0 for each τ ≥ 1. Step 1

showed that if the SO does not maximize his expected profit by selling directly to the

agents, then Q 6= ∅ and maxR∈Qπ (R) ≥ π (R′) for every IC scheme R′.

Proof of Proposition 3. We shall need additional notation for this proof. Let

(Rn)∞n=1 be a sequence of IC schemes such that each Rn is profit-maximizing when

there are n agents. For each n ∈ N, let (σn, βn) be an ABEE of Γ (Rn) that induces an

expected profit of π (Rn), where βn = (βn1 , β
n
2 ). We use kn to denote the last period in

which the agents accept offers in σn. If such a period does not exist, then kn = 0.

For each t ≥ 1 and j ∈ Dt, if j sells a license to the t-th entrant, then a link j → it

is formed. This induces a distribution tree T , rooted at the SO, where each node of

the tree (besides the root) represents a distributor. Denote the set of rooted directed

trees by T and let T n be the random tree induced by σn. Let Pr (T n = T |σn) denote

the probability that σn results in the distribution tree T . For each T ∈ T, the length

of the directed path connecting i and j in T is denoted by dT (i, j).

Let us introduce some basic facts about Rn and (σn, βn). Since the likelihood of

meeting new entrants decreases as time progresses, every agent accepts every offer that

he receives prior to period kn. Since rejected offers only lower the agents’ expectations,

every agent who receives an offer at t = kn accepts it and the SO does not make offers

20The assumption that the distributors make offers when they are indifferent selects the SPE that
induces the maximal expected profit for the SO but it does not necessarily select the profile σ.
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after period kn. Since p = 0, every distributor makes an offer to every agent with

whom he interacts and, therefore, βn2 = 1. The number of offers that each distributor

makes after period kn is
∑n

t=kn+1
1
t
. Since no offers are rejected prior to period kn, the

proportion of accepted offers is βn1 = 1
1+

∑n
j=kn+1

1
j

. Note that ηR
n

= 1 as, otherwise, the

SO’s expected profit can be increased by raising ηR
n
.

Lemmata 2 and 3 provide lower bounds for π (Rn) and kn, respectively.

Lemma 2 There exist two numbers γ̂ ∈ (0, 1) and n (γ̂) ∈ N such that π (Rn) ≥ γ̂n

for every n > n (γ̂).

Proof. Consider a small γ > 0 such that c
q(log(1/γ)−1)

< 1 and set k = dγne. Let R

be a scheme such that ηR = 1, aRτ = 0 for every τ ≥ 1, bR1 = c
q
∑n
i=k+1

1
i

, φR = 0, and

bRτ = 0 for every τ > 1. By definition, π (Rn) ≥ π (R).

Consider a profile of strategies σ in which every agent i ∈ I accepts (respectively,

rejects) every offer that he receives at every time t ≤ k (respectively, t > k) and, for

every t ≥ 1, every j ∈ Dt makes an offer if he meets an agent in period t.

As p = 0, the distributors’ behavior in σ is optimal. Since bR1 = c
q
∑n
i=k+1

1
i

and there

are no other commissions, every agent finds it optimal to purchase a license if and only

if t ≤ k. The SO’s expected profit is greater than qk[1 +
∑n

i=k+1
1
i
]
(
1− bR1

)
under σ.

If n is sufficiently large, then bR1 < c
q(log(1/γ)−1)

and 1 +
∑n

i=k+1
1
i
> log (1/γ). Hence,

π (Rn) ≥ π (R) ≥ nγ̂ := nγq

(
1− c

q (log (1/γ)− 1)

)
log (1/γ) (4)

Lemma 3 There exist γ̄ ∈ (0, 1) and n (γ̄) ∈ N such that kn > γ̄n for every n > n (γ̄).

Proof. Fix kn ≥ 1. The SO obtains at most 1 + B from each of the first kn entrants

and at most 1 from every agent who meets a distributor after period kn. Hence,

π (Rn) ≤ kn (1 +B) + (kn + 1)
n∑

i=kn+1

1

i
< kn (2 +B) + log (n) + knlog (n/kn) (5)

Let γ̄ ∈ (0, 1) such that γ̄ (2 +B) < γ̂/3 and γ̄log (1/γ̄) < min {γ̂/3, 1/e}. There

exists n (γ̄) such that if n > n (γ̄) and kn ≤ γ̄n, then the lower bound on the SO’s

expected profit that is obtained in (4) is greater than the upper bound in (5).

As p = 0, it must be that, under σn, the SO makes an offer to every agent that

he meets in a set of adjacent periods {sn, sn + 1, ..., kn}. Lemma 4 provides an upper

bound for sn, which denotes the first period in which the SO makes an offer under σn.
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Lemma 4 There exists a number n? such that sn ≤ 2(1+B)
γ̂

for every n > n?.

Proof. The SO’s expected revenue from the retail sales made prior to period sn is

q
∑sn−1

i=1
1
i
< q (log (n) + 1). Since p = 0, only the agents who will meet the SO after

period sn−1 and their successors can buy a license (or purchase the good) from period

sn onward. The number of these potential buyers is the number of nodes in a subtree

of a uniform random recursive tree of size n + 1 (excluding the root), rooted at the

sn-th node, which is, in expectation, n+1−sn
sn

. Thus, the SO’s expected revenue cannot

exceed qlog (n)+q+ n+1−sn
sn

(1 +B) ≤ qlog (n)+q+ n
sn

(1 +B). By Lemma 2, for large

values of n, it must be that n
sn

(1 +B) ≥ γ̂n
2

and, therefore, sn ≤ 2(1+B)
γ̂

.

Lemma 5 examines the induced number of distributors at the optimum, |T n| − 1.

Lemma 5 Fix arbitrary ε > 0 and ρ > 0. There exists a number n (ε, ρ) such that

Pr (|T n| > ρ) > 1− ε for every n > n (ε, ρ).

Proof. Note that |T n| is the number of nodes in a subtree of a uniform random

recursive tree of size kn + 1, rooted at the sn-th node. By Theorem 1 in Athreya

and Ney (1972, p. 220), as kn goes to infinity, the limiting distribution of |Tn|
kn+1

is

Beta (1, sn − 1). By Lemma 3, kn > γ̄n for a sufficiently large n. By Lemma 4, sn is

bounded from above. Thus, for a sufficiently large n, Pr (|T n| > ρ) is arbitrarily close

to 1.

We now examine the SO’s “dual” problem: finding an IC scheme Rn that minimizes

his expected cost given φR
n
, ηR

n
, and that is subject to the requirement that σn be part

of an ABEE of Γ (Rn). Denote by κz the increase in the SO’s expected costs (given

that σ is being played) when the commission z is increased. The dual problem is:

mina1,...,an,b1,...,bnκa1a1 + ...+ κanan + κb1b1 + ...+ κbnbn (6)

s.t (i) σn is an ABEE of the induced game (7)

(ii) aτ ≤ φR
n

and bτ ≤ 1 for every τ ∈ {1, ..., n} (8)

Since p = 0, the distributors’ behavior in σn is optimal regardless of the scheme that is

used. Thus, if the kn-th entrant is indifferent between buying a license and not, then

(7) holds. If (7) holds and the kn-th entrant strictly prefers buying a license, we can

reduce the SO’s costs by scaling down the commissions. Thus, we can write (7) as:

wa1a1 + ...+ wan−knan−kn + wb1b1 + ...+ wbn−kn = φR
n

+ c (9)
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where wz is the increase in the kn-th entrant’s willingness to pay for a license when the

commission z is increased and the ABEE (σn, βn) is played.

Lemma 6 For every two commissions aR
n

τ and z ∈ {a1, ..., an−kn , b1, ..., bn−kn} (re-

spectively, bR
n

τ and z ∈ {a1, ..., an−kn , b1, ..., bn−kn}) such that τ ≤ n− kn, if z > 0 and
κaτ
waτ

< κz
wz

(respectively,
κbτ
wbτ

< κz
wz

), it is the case that aR
n

τ = φR
n

(respectively, bR
n

τ = 1).

Proof. The proof follows directly from the linearity of (6) and (9).

We now examine the costs of the recruitment commissions. Let 1 (dT (SO, j) > τ) ∈
{0, 1} be an indicator that equals 1 if and only if dT (SO, j) > τ .

Lemma 7 Fix ε > 0 and τ ≥ 0. There exists a number nε,τ such that if n > nε,τ , then

κaτ =
∑
T∈T

∑
j∈T

Pr (T n = T |σn)1 (dT (SO, j) > τ) > (1− ε)
∑
T∈T

∑
j∈T

Pr (T n = T |σn)

Proof. The tree T n is a uniform random recursive tree rooted at the SO. Denote the

i-th agent to buy a license by j. The distance dT (SO, j) corresponds to the distance

between the root and the (i + 1)-th node of a uniform random recursive tree. It is

referred to as the insertion depth of the (i + 1)-th node. A central limit theorem

(Theorem 1 in Mahmoud, 1991) shows that the normalized insertion depth M?
i =

Mi−log(i)√
log(i)

has the limiting distribution N (0, 1), i.e., the standard normal distribution.

Hence, for every ε′ > 0 and τ ≥ 0, there exists ρε′,τ such that for every ρ > ρε′,τ :∑
T :|T |=ρ

∑
j∈T

1 (dT (SO, j) > τ)

(ρ− 1)!
> (1− ε′) ρ (10)

Since the agents are equally likely to meet new entrants, for every T ∈ T, it holds

that Pr (T n = T |σn) = 1
(|T |−1)!

Pr (|T n| = |T ||σn). We can write the premise as

κaτ =
kn−sn+2∑
ρ=1

∑
T :|T |=ρ

∑
j∈T

Pr (|T n| = ρ|σn)

(ρ− 1)!
1 (dT (SO, j)) > (1− ε)

kn−sn+2∑
ρ=1

ρPr (|T n| = ρ|σn)

By (10), the above inequality holds for large values of ρ. By Lemma 5, for any ρ ∈ N,

ε′ > 0, and sufficiently large value of n, it holds that Pr (|T n| < ρ|σn) < ε′. It follows

that the above inequality holds for sufficiently large values of n.

When a distributor j such that dT (SO, j) = τ makes a sale, the SO pays a total of

bR
n

1 + ...+ bR
n

τ , and if j purchases the good, then the SO pays a total of bR
n

1 + ...+ bR
n

τ−1.

Hence, κbτ = q
(
κaτ + κaτ−1

∑n
t=kn+1

1
t

)
, where q

∑n
t=kn+1

1
t

is the expected number of

sales per distributor after period kn.
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Denote by lnτ the expected number of agents at the τ -th level of the subtree of G,

rooted at the kn-th entrant (e.g., ln1 =
∑n

j=kn+1
1
j
). Note that βn1 = 1

1+ln1
. Since p = 0

and βn2 = 1, the kn-th entrant analogy-based expects to have lnτ (βn1 )τ distributors at

the τ -th level of his downline. Thus, waτ := lnτ (βn1 )τ and wbτ = qlnτ (βn1 )τ−1.

Lemma 8 is a technical result on random trees and its proof appears in the Technical

Results section of the online appendix.

Lemma 8 For every n and τ ∈ {1, ..., n− 1}, it holds that ln1 l
n
τ ≥ 2lnτ+1.

Lemma 9 studies the structure of Rn for large values of n, using the ratio κ
w

.

Lemma 9 Fix an arbitrary integer τ ? > 1. There exists a number nτ? such that

aR
n

τ = 0 and bR
n

τ = 0 for every pair (n, τ) such that n > nτ? and τ ∈ {2, ..., τ ?}.

Proof. By Lemma 8, ln1 l
n
τ ≥ 2lnτ+1 for every n and τ ∈ {1, ..., n− 1}. Hence, waτ ≥

2waτ+1 and wbτ ≥ 2wbτ+1 . Note that qwaτ = wbτβ
n
1 for every n and τ ≤ n − kn. By

Lemma 7, for every τ ? ∈ N, there exists a number nτ? such that
κbτ
κbτ+1

and κaτ
κaτ+1

are

arbitrarily close to 1, and
κbτ
κaτ

is arbitrarily close to q (1 + ln1 ) for every pair τ ≤ τ ? and

n > nτ? . Hence, for every pair τ ≤ τ ? and n > nτ? , it holds that

κaτ
waτ

<
κaτ+1

waτ+1

,
κbτ
wbτ

<
κbτ+1

wbτ+1

,
κaτ
waτ

<
κbτ+1

wbτ+1

, and
κbτ
wbτ

<
κaτ+1

waτ+1

(11)

By Lemma 6, the ratios in (11) imply that for every n > nτ? , if aR
n

τ > 0 or bR
n

τ > 0

for τ ∈ {2, ..., τ ?}, then aR
n

1 = φR
n

and bR
n

1 = 1. If aRn1 = φRn and bRn1 = 1, then

the SO’s profit cannot exceed his own sales and recruitments. Thus, π (Rn) cannot

exceed
∑n

j=1
(1+B)
j

. For large values of n,
∑n

j=1
(1+B)
j

is less than the lower bound for

the SO’s expected profit, given in (4). Hence, for every τ ? ∈ N, there exists nτ? such

that aR
n

τ = 0 and bR
n

τ = 0 for each pair (n, τ) such that n > nτ? and τ ∈ {2, ..., τ ?}.
Lemma 10 provides an upper bound for

∑
τ>τ? (waτ + wbτ ).

Lemma 10 For every ε > 0, there exist τ ? ∈ N and n (ε, τ ?) such that
∑

τ>τ? l
n
τ (βn1 )τ−1

< ε for every n > n (ε, τ ?).

Proof. By Lemma 3, for sufficiently large n, it must be that kn > γ̄n and, therefore,

ln1 < log (1/γ̄) + 1. By Lemma 8, ln1 l
n
τ−1 ≥ 2lnτ for every τ ≤ n− 1. It follows that∑

τ>τ?

lnτ
(1 + ln1 )τ−1 < 0.5 (log (1/γ̄) + 1)

∑
τ>τ?

lnτ−1

(1 + ln1 )τ−1
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Since ln1 l
n
τ−1 ≥ 2lnτ , it must be that (log (1/γ̄) + 1)

∑
τ>τ?

lnτ−1

(1+ln1 )
τ−1 < ε for large τ ?.

Consider large values of τ ? and n > nτ? , and assume that φRn > 0. We shall show

that the SO can increase his expected profit by means of a scheme that does not charge

entry fees. Lemma 9 showed that aR
n

τ = 0 and bR
n

τ = 0, for every τ ∈ {2, ..., τ ?}. Lemma

10 showed that, if τ ? is sufficiently large, then, ex ante, a reward of at most ε
(
φR

n
+ 1
)

can be provided to the kn-th entrant by means of the commissions
{
bR

n

τ : τ > τ ?
}

and{
aR

n

τ : τ > τ ?
}

, where ε > 0 can be chosen to be arbitrarily close to 0.

Let us eliminate the recruitment commissions (i.e., aR
n

1 and
{
aR

n

τ : τ > τ ?
}

) and the

entry fees. The SO’s expected revenue is reduced by φR
n

multiplied by the expected

number of distributors. By the inequality in the premise of Lemma 7, for a sufficiently

large n, the SO’s expected revenue is reduced by no more than φR
n κa1

1−ε . In addition

to this change, let us reduce bR
n

1 by φR
n ε

1−ε
wa1
wb1

+
(
φR

n − aRn1

) wa1
wb1

. The total expected

reduction in the SO’s cost is greater than

aR
n

1 κa1 + φR
n ε

1− ε
wa1
wb1

κb1 +
(
φR

n − aRn1

) wa1
wb1

κb1 (12)

Since
κa1
wa1

=
κa1
ln1 β

n
1

=
κa1+κa1 l

n
1

ln1
<

qκa1+qκa0 l
n
1

qln1
=

κb1
wb1

, (12) must be greater than φR
n κa1

1−ε .

Eliminating the recruitment commissions reduces the kn-th entrant’s willingness

to pay for a license by at most aR
n

1 wa1 + φR
n
ε. The reduction in bR

n

1 reduces his

willingness to pay for a license by at most
(
φR

n − aRn1

)
wa1 +φRn ε

1−εwa1 . By Lemma 3,

ln1 < log (1/γ̄) + 1 such that wa1 is bounded below 1. Thus, for sufficiently small ε, the

reduction in the kn-th entrant’s willingness to pay for a license is less than φR
n
. This

contradicts φRn > 0 being part of a profit-maximizing scheme as the change renders

both the SO and the kn-th entrant better off.

If bR
n

1 ≥ φR
n ε

1−ε
wa1
wb1

+
(
φR

n − aRn1

) wa1
wb1

, then the above exercise is viable. If not,

then the kn-th entrant’s willingness to pay for a license cannot exceed

φR
n ε

1− ε
wa1
wb1

wb1 +
(
φR

n − aRn1

) wa1
wb1

wb1 + εφR
n

+ ε+ aR
n

1 wa1 (13)

Since φR
n ≤ B, if ε > 0 is sufficiently small, then (13) is less than φR

n
+ c, which is in

contradiction to the optimality of the kn-th entrant’s decision to purchase a license.

In conclusion, for large values of n, it holds that φR
n

= 0, for otherwise, the SO

could increase his expected profit by means of an IC scheme that does not charge entry

fees. Since Rn is IC and φR
n

= 0, it follows that aR
n

τ = 0 for every τ ≥ 1.
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Online Appendix

This appendix includes three sections. In Section B.1, we show that the main results

of the paper hold when we allow for an infinite horizon. In Section B.2, we discuss the

implications of prominent behavioral models for the paper’s main results. Section B.3

provides two technical results.

B.1 A Semistationary Model with an Infinite Horizon

Our main objective is to show that the paper’s main insights do not depend on the

finiteness of the game. We shall focus on Theorems 1–4 and show that similar results

hold when there is uncertainty about the length of the game.

Let us relax the assumption that the game has a fixed number of periods and assume

instead that, for each period t ∈ N, conditional on the game reaching period t ∈ N,

there is a probability of δ < 1 that the game continues and a probability of 1− δ that

it terminates in period t. Note that we can no longer assume that the set of agents is

finite. We shall assume that the set of potential entrants is I = [0, 1] and that, as in

the main text, in each period t ∈ N, nature draws one agent i ∈ I to enter the game,

uniformly at random. In order to facilitate the exposition, we shall assume that each

agent i’s strategy σi : N → {0, 1} × {0, 1} is a mapping from time to two decisions:

whether or not to purchase a license and whether or not to make an offer.

For each t ∈ N, the average probability that agents accept an offer in period t is

σ̄t :=
∫
j∈I σj (t) dj, where σj (t) = 0 (respectively, σj (t) = 1) if j rejects (respectively,

accepts) offers he receives in period t. Let rσ (t) be the probability that the t-th

entrant receives an offer to purchase a license given the profile σ. We shall say that

β1 is consistent with σ if β1 =
∑∞

t=1 rσ (t) σ̄t whenever rσ (t) > 0 for some t ∈ N. The

consistency of β2 is defined in an analogous manner. As in the main text, an ABEE

is a pair of profiles (σ, β) such that the agents’ analogy-based expectations, β1 and β2,

are consistent with σ and each agent’s strategy is optimal w.r.t. β. The rest of the

modeling assumptions remain as in the main text.

Propositions 4, 5, and 6 are analogous to Theorem 1, Proposition 2 (from which

Theorems 2.1 and 3 follow), and Theorem 4, respectively. The proofs of these results

are similar to the proofs of the results in the main text except for one main difference:

since the number of periods is not finite, we need to show that there is a period t? ∈ N
such that in every game that is induced by an IC scheme, from period t? onward,
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rejecting every offer to purchase a license is the unique best response of each agent

i ∈ I (regardless of his beliefs about the other agents’ behavior). This technical result

will allow us to treat the game as one with a finite number of periods.

Proposition 4 Let q = 0. There exists no IC one-level scheme R such that π (R) > 0.

Proof. Let R be an IC one-level scheme such that φR > 0. Assume by way of

contradiction that there exists an ABEE of Γ (R) in which the agents purchase licenses.

Since the agents are equally likely to meet new entrants, in expectation, an agent

who enters the game in period k will have Sk =
∑∞

j=1
δj

k+1
successors in G. He cannot

analogy-based expect to sell more than Skβ1 licenses if he purchases one and, as R is

IC, he cannot analogy-based expect a reward greater than Skβ1a
R
1 −φR ≤ Skβ1φ

R−φR

if he purchases a license. A distributor who interacts with the k-th entrant cannot

analogy-based expect to sell more than pSkβ1 licenses to the k-th entrant’s successors

if he refrains from selling a license to the k-th entrant. As limk→∞Sk = 0, there exists

a period t such that, in every ABEE of Γ (R), after period t every agent rejects every

offer and every distributor makes an offer to every agent with whom he interacts.

We shall prove Proposition 4 by induction on the size of t. We shall show that if no

agent purchases a license after period t and every distributor makes an offer to every

agent with whom he interacts after period t, then, in period t, no agent purchases a

license and every distributor makes an offer to every agent with whom he interacts.

The LHS (respectively, RHS) of (14) is the expected (respectively, analogy-based

expected) number of offers that a distributor who buys a license in period t makes.

vt =
∞∑

j=t+1

δj−t

j
+ p

∞∑
j=t+1

∞∑
j′=j+1

δj
′−t

jj′
+ p2

∞∑
j=t+1

∞∑
j′=j+1

∞∑
j′′=j+1

δj
′′−t

jj′j′′
+ ... ≥ (14)

v̂t =
∞∑

j=t+1

δj−t

j
+ p (1− β1)

∞∑
j=t+1

∞∑
j′=j+1

δj
′−t

jj′
+ p2 (1− β1)2

∞∑
j=t+1

∞∑
j′=j+1

∞∑
j′′=j+1

δj
′′−t

jj′j′′
+ ...

Each offer that is accepted up to period t results in a distributor who, if the game

reaches period t, in expectation, makes vt offers to the agents that he meets after period

t and their successors. Thus, β1 ≤ 1
1+δtvt

. It follows that v̂tβ1 ≤ vt
1+δtvt

≤
δ

(t+1)(1−δ)

1+δt δ
(t+1)(1−δ)

<

1, where the second inequality results from plugging p = 1 into vt.

Since R is IC, it follows that φR ≥ aR1 . In an ABEE, the agents do not purchase

a license in period t as v̂tβ1φ
R − φR < 0. Every distributor makes an offer to every

agent with whom he interacts in period t as he analogy-based expects to sell pv̂tβ1 < 1
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licenses to the t-th entrant’s successors if he does not sell a license to him. By induction,

we obtain a contradiction to the existence of an ABEE in which the agents purchase

licenses when φR > 0. As q = 0, there exists no IC scheme R such that π (R) > 0.

Proposition 5 Fix q = 0. There exists a number δ? < 1 such that for every δ > δ?

there exists a number p? (δ) such that if p ≤ p? (δ), then there exists an IC two-level

scheme R such that π (R) > 0.

Proof. The proof is identical to the proof of Proposition 2 for the case of α = 1

except for three changes: the analogy-based expectations change from β1 = 1
1+

∑n
t=2

1
t

to β̂1 = 1

1+
∑∞
i=1

δi

1+i

, the number of agents in the first level of the subtree of G rooted

at the first entrant changes from l1 =
∑n

t=2
1
t

to l̂1 =
∑∞

i=1
δi

1+i
, and the number

of agents at the second level of that subtree changes from l2 =
∑n−1

t=2

∑n
t′=t+1

1
tt′

to

l̂2 =
∑∞

i=1

∑∞
i′=i+1 δ

i′ 1
(1+i)(1+i′)

.

As limδ→1 β̂1l̂1 = 1 = limn→∞ β1l1 and limδ→1 β̂
2
1 l̂1 = 1

2
= limn→∞ β

2
1 l2, these

changes do not affect the proof. For δ < 1 sufficiently close to 1, the first entrant

analogy-based expects a reward arbitrarily close to 3
2
φRx − φR − c, where x < 1 and

φR can be set such that this expression is equal to 0.

Proposition 6 Let c > 0 and q > 0. There exists an IC profit-maximizing scheme R?

such that φR
?

= 0 and aR
?

τ = 0 for every τ ≥ 1.

Proof. Consider an arbitrary IC scheme R and an agent j who contemplates purchas-

ing a license in period t ∈ N. He expects to have
∑∞

i=1
δi

t+1
successors in G. Agent

j expects a payoff smaller than
(
φR + q

)∑∞
i=1

δi

t+1
− φR − c if he purchases a license.

As c > 0, there is a period t? from which point onward purchasing a license is strictly

suboptimal regardless of j’s beliefs about his successors’ behavior. Hence, there exists

a period t? such that for every t > t?, every IC scheme R, and every agent j ∈ I,

purchasing a license in period t of Γ (R) is strictly suboptimal for j regardless of his

beliefs about the other agents’ strategies.

The rest of the proof is identical to the proof of Theorem 4 except for two changes.

First, we need to replace n with t? in the last paragraph. Second, the expression for vt

changes to the LHS of (14) instead of (1).

B.2 Comparison to Prominent Behavioral Models

The agents in our model correctly predict the number of individuals that they will en-

counter and have a correct, yet coarse, estimate of the likelihood that these individuals
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will accept offers. One important motivation for these assumptions is that informa-

tion about the time the scheme started, the number of current members, and coarse

summary statistics on the sales force’s performance in past schemes are typically easier

to obtain compared to more accurate details about the likelihood of recruiting new

participants in different stages of the scheme.

Inspired by Shiller’s (2015) description of speculative bubbles as “naturally oc-

curring Ponzi schemes,” we explore the implications of prominent behavioral finance

models for our results.

Non-common priors

A natural modeling assumption in the context of pyramid schemes is that people under-

estimate the finiteness of the process and, thus, overestimate the number of individuals

that they will encounter. Let us examine a case in which different agents hold different

prior beliefs about the length of the game. To do so, we relax the assumption that

the number of periods is fixed and assume instead that each agent i believes that, in

each period t ∈ N, conditional on the game reaching period t, the game continues for

an additional period (and a new agent enters) with a probability of δi, and that it

terminates at t with a probability of 1− δi.
We assume that it is commonly known that the agents’ priors are drawn from a

distribution with a support
[
δ, δ̄
]

and interpret this distribution as the distribution of

opinions in the general population. For the sake of brevity, we set21 δ̄ < 1. The next

result shows that the SO cannot sustain a pyramid scam unless there are additional

departures from the classic rational expectations model.

Proposition 7 Let q = 0. There exists no IC reward scheme R such that the SO

makes a strictly positive expected profit in a subgame perfect Nash equilibrium of Γ (R).

Proof. Consider an agent j who contemplates purchasing a license in period t ∈ N. He

expects to have
∑∞

i=1

δij
t+1
≤
∑∞

i=1
δ̄i

t+1
successors. If R is IC, j expects a payoff smaller

than
(
φR + q

)∑∞
i=1

δ̄i

t+1
− φR − c if he purchases a license. If φR > 0 or c > 0, then

there is a period t? from which point onward purchasing a license is strictly suboptimal

regardless of j’s beliefs about his successors’ behavior.

A standard backward induction argument shows that, in every SPE of a game that

is induced by any IC scheme, the agents never purchase a license if φR > 0.

21The assumption that δ̄ < 1 can be replaced by mild assumptions on the distribution from which
the priors are drawn. For example, the result of Proposition 7 would hold under the assumption that
the priors are drawn from the uniform distribution on [0, 1].
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Agents who hold non-common prior beliefs differ in how they evaluate the future,

but their evaluation is independent of the history. However, in an ABEE, the agents’

evaluation of the future is affected by the overall behavior of the other agents and, in

particular, by the events that take place early in the game. This history-dependence

prevents the use of standard unravelling arguments and enables pyramid scams to work.

Extrapolation and feedback loops

A strand of the behavioral finance literature suggests that behavioral biases such as

the representativeness heuristic lead individuals to extrapolate from past trends when

they form their expectations. Shiller (2015) coined the term “feedback loop” in refer-

ence to situations in which “past price increases generate expectations of further price

increases.” In the context of pyramid scams, prospective participants who extrapolate

from the success of individuals who joined the pyramid in its early stages may overes-

timate their own ability to recruit new members to the pyramid. We now incorporate

this type of behavior into our model and illustrate the robustness of the paper’s main

result (i.e., Theorem 1).

For every t > 1, denote by γt the average number of recruitments per distributor

up to period t, and set γ1 = 0. Suppose that some of the agents are extrapolators. An

extrapolator who receives an offer to join the pyramid in period t ≥ 1 believes that he

will recruit γt new agents to the pyramid. Observe that since the SO recruits some of

the agents, γt < 1 for every t > 1. Recall that a necessary condition for an agent to

purchase a license in an IC one-level scheme’s induced game is that he expects to sell

at least one license. It follows that the SO cannot sustain a pyramid scam by means

of an IC one-level scheme even in the presence of extrapolating agents.

B.3 Technical Results

Theorem 2: Proof that the derivative of (3) w.r.t. p is nonpositive.

The derivative of the z-th component of (3), given by lz(1+pvk(p))z−1

(1+vk(p))z
, w.r.t. p is

lz

(1 + vk (p))2z [(z − 1) (1 + vk (p))z (1 + pvk (p))z−2 (vk (p) + v′k (p) p)] (15)

− lz

(1 + vk (p))2z [z (1 + vk (p))z−1 (1 + pvk (p))z−1 v′k (p)]

The derivative of (3) w.r.t. p can be written as
∑n−k

z=1
z(1+pvk(p))z−1

(1+vk(p))z+1 [lz+1 (vk (p) + v′k (p) p)−
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lzv
′
k (p)] since ln−k+1 = 0. It equals the sum of the following square matrix’s elements:

(l2l1 − l1l2) γ11 (l2l2 − l1l3) γ12 (l2l3 − l1l4) γ13 . . . (l2ln−k − 0) γ1(n−k)

(l3l1 − l2l2) γ21 0× γ22 (l3l3 − l2l4) γ23 . . .
...

(l4l1 − l3l2) γ31 (l4l2 − l3l3) γ32 0× γ33 . . .
...

...
...

...
. . .

...

(0− ln−kl2) γ(n−k)1 . . . . . . . . . 0


where γxy = xypy−1(1+pvk(p))x−1

(1+vk(p))x+1 . Observe that γxy ≥ γyx if and only if x ≥ y. Hence, the

derivative of (3) w.r.t. p is (weakly) negative if l2
l1
≥ l3

l2
≥ ... ≥ ln−k

ln−k−1
.

To prove the above inequality, consider the subtree of G rooted at the k-th entrant

and denote by oλ,t the expected number of agents at the λ-th level of that subtree at

the end of period t > k. An increase in t strictly raises o2,t
o1,t

since o1,t − o1,t−1 = 1
t

and

o2,t − o2,t−1 = 1
t

(
1

k+1
+ ...+ 1

t−1

)
. The LHS of (16) is weakly increasing in t as o2,t

o1,t
is

increasing in t:

oλ+1,t

oλ,t
=
oλ+1,t−1 + 1

t
oλ,t−1

oλ,t−1 + 1
t
oλ−1,t−1

(16)

Extend the branching process to n+ 1 periods and consider λ ≤ n− k such that (16)

is well defined for t = n + 1. Since the LHS of (16) is weakly increasing in t, it must

be that
oλ+1,n+1

oλ,n+1
≥ oλ+1,n

oλ,n
. The equality in (16) implies that

oλ,n
oλ−1,n

≥ oλ+1,n+1

oλ,n+1
≥ oλ+1,n

oλ,n
.

Since
oλ,n
oλ−1,n

= lλ
lλ−1

, it follows that l2
l1
≥ ... ≥ ln−k

ln−k−1
≥ ln−k+1

ln−k
= 0.

Proof of Lemma 8. Define lnτ,t to be the expected number of agents at the τ -th level

of the subtree of G rooted at the t-th entrant. Note that lnτ,t = 0 for every τ > n − t.

Observe that for any t ≤ n it holds that
(
ln1,t
)2

=
(∑n

j=t+1
1
j

)2

= 2l2,t +
∑n

j=t+1
1
j2

. We

prove the lemma by induction on the size of τ . Assume that ln1,tl
n
τ−1,t ≥ 2lnτ,t for every

t ≤ n. Let us show that ln1,tl
n
τ,t ≥ 2lnτ+1,t. We can write this inequality as:

ln1,t

(
lnτ−1,t+1

t+ 1
+
lnτ−1,t+2

t+ 2
+ ...

)
≥ 2

(
lnτ,t+1

t+ 1
+
lnτ,t+2

t+ 2
+ ...

)
(17)

By the induction hypothesis, (17) holds. Thus, ln1 l
n
τ = ln1,knl

n
τ,kn ≥ 2lnτ+1,kn = 2lnτ+1.
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